MedLLAMA / README.md
mockingmonkey's picture
Training in progress, step 500
f9832e4 verified
|
raw
history blame
2.26 kB
metadata
base_model: meta-llama/Meta-Llama-3-8B
library_name: peft
license: llama3
tags:
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: MedLLAMA
    results: []

Visualize in Weights & Biases

MedLLAMA

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8819

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.1988 0.6000 2435 0.9183
0.7397 1.2001 4870 0.9037
0.646 1.8001 7305 0.8777
0.8205 2.4002 9740 0.8819

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: QuantizationMethod.BITS_AND_BYTES
  • _load_in_8bit: False
  • _load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float16
  • bnb_4bit_quant_storage: uint8
  • load_in_4bit: True
  • load_in_8bit: False

Framework versions

  • PEFT 0.6.2