File size: 1,299 Bytes
36977f3 26234fe 36977f3 26234fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
---
language:
- en
- zh
pipeline_tag: text-generation
tags:
- Awq
- int4
- yi1.5-34B-Chat
- pytorch
license: apache-2.0
license_name: apache-2.0
license_link: LICENSE
---
## About Quantization
我们使用modelscope [swift](https://github.com/modelscope/swift/)仓库进行AWQ 4bit量化. 量化文档可以查看[这里](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM%E9%87%8F%E5%8C%96%E6%96%87%E6%A1%A3.md). 量化命令如下:
We use the modelscope [swift](https://github.com/modelscope/swift/) repository to perform AWQ 4bit quantization. Quantization documentation can be found [here](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/LLM-quantization.md). The quantization command is as follows:
```bash
# Experimental Environment: A100
swift export \
--quant_bits 4 \
--model_type yi-1_5-34b-chat \
--quant_method awq \
--quant_n_samples 32 \
--dataset alpaca-zh alpaca-en sharegpt-gpt4-mini \
--quant_seqlen 4096
```
Inference:
```bash
CUDA_VISIBLE_DEVICES=0 swift infer --model_type yi-1_5-34b-chat-awq-int4
```
SFT:
```bash
CUDA_VISIBLE_DEVICES=0 swift sft --model_type yi-1_5-34b-chat-awq-int4 --dataset leetcode-python-en
```
Original Model:
[YI1.5-34B-Chat](https://modelscope.cn/models/01ai/Yi-1.5-34B-Chat/summary)
|