File size: 5,346 Bytes
acafce2 8d3b8fe acafce2 8d3b8fe acafce2 8d3b8fe acafce2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
language: ar
datasets:
- common_voice
- arabic_speech_corpus
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Mohammed XLSR Wav2Vec2 Large 53
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice ar
type: common_voice
args: ar
metrics:
- name: Test WER
type: wer
value: 36.699
- name: Validation WER
type: wer
value: 36.699
---
# Wav2Vec2-Large-XLSR-53-Arabic
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
on Arabic using the `train` splits of [Common Voice](https://huggingface.co/datasets/common_voice)
and [Arabic Speech Corpus](https://huggingface.co/datasets/arabic_speech_corpus).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
%%capture
!pip install datasets
!pip install transformers==4.4.0
!pip install torchaudio
!pip install jiwer
!pip install tnkeeh
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ar", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")
model = Wav2Vec2ForCTC.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("The predicted sentence is: ", processor.batch_decode(predicted_ids))
print("The original sentence is:", test_dataset["sentence"][:2])
```
The output is:
```
The predicted sentence is : ['ألديك قلم', 'ليست نارك مكسافة على هذه الأرض أبعد من يوم أمس']
The original sentence is: ['ألديك قلم ؟', 'ليست هناك مسافة على هذه الأرض أبعد من يوم أمس.']
```
## Evaluation
The model can be evaluated as follows on the Arabic test data of Common Voice:
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
# creating a dictionary with all diacritics
dict = {
'ِ': '',
'ُ': '',
'ٓ': '',
'ٰ': '',
'ْ': '',
'ٌ': '',
'ٍ': '',
'ً': '',
'ّ': '',
'َ': '',
'~': '',
',': '',
'ـ': '',
'—': '',
'.': '',
'!': '',
'-': '',
';': '',
':': '',
'\'': '',
'"': '',
'☭': '',
'«': '',
'»': '',
'؛': '',
'ـ': '',
'_': '',
'،': '',
'“': '',
'%': '',
'‘': '',
'”': '',
'�': '',
'_': '',
',': '',
'?': '',
'#': '',
'‘': '',
'.': '',
'؛': '',
'get': '',
'؟': '',
' ': ' ',
'\'ۖ ': '',
'\'': '',
'\'ۚ' : '',
' \'': '',
'31': '',
'24': '',
'39': ''
}
# replacing multiple diacritics using dictionary (stackoverflow is amazing)
def remove_special_characters(batch):
# Create a regular expression from the dictionary keys
regex = re.compile("(%s)" % "|".join(map(re.escape, dict.keys())))
# For each match, look-up corresponding value in dictionary
batch["sentence"] = regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], batch["sentence"])
return batch
test_dataset = load_dataset("common_voice", "ar", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")
model = Wav2Vec2ForCTC.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
test_dataset = test_dataset.map(remove_special_characters)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 36.699%
## Future Work
One can use *data augmentation*, *transliteration*, or *attention_mask* to increase the accuracy.
|