File size: 5,371 Bytes
acafce2
 
f695c10
acafce2
 
 
 
 
f695c10
 
 
 
 
 
acafce2
 
 
f695c10
acafce2
f695c10
acafce2
 
 
 
 
f695c10
 
 
 
 
 
acafce2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d3b8fe
acafce2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
language: ar
license: apache-2.0
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
datasets:
- common_voice
- arabic_speech_corpus
metrics:
- wer
base_model: facebook/wav2vec2-large-xlsr-53
model-index:
- name: Mohammed XLSR Wav2Vec2 Large 53
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: Common Voice ar
      type: common_voice
      args: ar
    metrics:
    - type: wer
      value: 36.699
      name: Test WER
    - type: wer
      value: 36.699
      name: Validation WER
---
# Wav2Vec2-Large-XLSR-53-Arabic

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
on Arabic using the `train` splits of [Common Voice](https://huggingface.co/datasets/common_voice)
and [Arabic Speech Corpus](https://huggingface.co/datasets/arabic_speech_corpus).
When using this model, make sure that your speech input is sampled at 16kHz.

## Usage

The model can be used directly (without a language model) as follows:

```python
%%capture
!pip install datasets
!pip install transformers==4.4.0
!pip install torchaudio
!pip install jiwer
!pip install tnkeeh

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "ar", split="test[:2%]")


processor = Wav2Vec2Processor.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")
model = Wav2Vec2ForCTC.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("The predicted sentence is: ", processor.batch_decode(predicted_ids))
print("The original sentence is:", test_dataset["sentence"][:2])
```

The output is:

```
The predicted sentence is : ['ألديك قلم', 'ليست نارك مكسافة على هذه الأرض أبعد من يوم أمس']
The original sentence is: ['ألديك قلم ؟', 'ليست هناك مسافة على هذه الأرض أبعد من يوم أمس.']
```

## Evaluation

The model can be evaluated as follows on the Arabic test data of Common Voice:

```python

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
# creating a dictionary with all diacritics
dict = {
'ِ': '',
'ُ': '', 
'ٓ': '', 
'ٰ': '', 
'ْ': '', 
'ٌ': '', 
'ٍ': '', 
'ً': '', 
'ّ': '', 
'َ': '',
'~': '',
',': '',
'ـ': '',
'—': '',
'.': '',
'!': '',
'-': '',
';': '',
':': '',
'\'': '',
'"': '',
'☭': '',
'«': '',
'»': '',
'؛': '',
'ـ': '',
'_': '',
'،': '',
'“': '',
'%': '',
'‘': '',
'”': '',
'�': '',
'_': '',
',': '',
'?': '',
'#': '',
'‘': '',
'.': '',
'؛': '',
'get': '',
'؟': '',
'  ': ' ',
'\'ۖ ': '',
'\'': '',
 '\'ۚ' : '',
 ' \'': '',
 '31': '', 
 '24': '',
 '39': ''
} 

# replacing multiple diacritics using dictionary (stackoverflow is amazing)
def remove_special_characters(batch):
  # Create a regular expression  from the dictionary keys
  regex = re.compile("(%s)" % "|".join(map(re.escape, dict.keys())))
  # For each match, look-up corresponding value in dictionary
  batch["sentence"] = regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], batch["sentence"])
  return batch 
  

test_dataset = load_dataset("common_voice", "ar", split="test") 
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic") 
model = Wav2Vec2ForCTC.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")
model.to("cuda")


resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
test_dataset = test_dataset.map(remove_special_characters)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 36.699%


## Future Work

One can use *data augmentation*, *transliteration*, or *attention_mask* to increase the accuracy.