End of training
Browse files
README.md
CHANGED
@@ -26,7 +26,7 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Wer
|
28 |
type: wer
|
29 |
-
value: 20.
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -36,8 +36,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
36 |
|
37 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
|
38 |
It achieves the following results on the evaluation set:
|
39 |
-
- Loss: 0.
|
40 |
-
- Wer: 20.
|
41 |
|
42 |
## Model description
|
43 |
|
@@ -56,46 +56,29 @@ More information needed
|
|
56 |
### Training hyperparameters
|
57 |
|
58 |
The following hyperparameters were used during training:
|
59 |
-
- learning_rate:
|
60 |
- train_batch_size: 2
|
61 |
- eval_batch_size: 8
|
62 |
- seed: 42
|
63 |
-
- gradient_accumulation_steps:
|
64 |
-
- total_train_batch_size:
|
65 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
66 |
- lr_scheduler_type: linear
|
67 |
- lr_scheduler_warmup_steps: 500
|
68 |
-
- training_steps:
|
69 |
- mixed_precision_training: Native AMP
|
70 |
|
71 |
### Training results
|
72 |
|
73 |
-
| Training Loss | Epoch | Step
|
74 |
-
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.1042 | 1.6630 | 4000 | 0.2516 | 21.0512 |
|
83 |
-
| 0.1001 | 1.8709 | 4500 | 0.2472 | 20.4092 |
|
84 |
-
| 0.0827 | 2.0788 | 5000 | 0.2469 | 20.3848 |
|
85 |
-
| 0.0672 | 2.2869 | 5500 | 0.2665 | 21.1357 |
|
86 |
-
| 0.0673 | 2.4948 | 6000 | 0.2674 | 21.5093 |
|
87 |
-
| 0.0681 | 2.7026 | 6500 | 0.2635 | 20.6101 |
|
88 |
-
| 0.0661 | 2.9105 | 7000 | 0.2602 | 20.5069 |
|
89 |
-
| 0.0494 | 3.1184 | 7500 | 0.2708 | 20.5444 |
|
90 |
-
| 0.0352 | 3.3263 | 8000 | 0.2688 | 20.5181 |
|
91 |
-
| 0.0338 | 3.5341 | 8500 | 0.2717 | 20.2515 |
|
92 |
-
| 0.0318 | 3.7420 | 9000 | 0.2723 | 20.2403 |
|
93 |
-
| 0.0309 | 3.9499 | 9500 | 0.2711 | 20.1727 |
|
94 |
-
| 0.022 | 4.1578 | 10000 | 0.2758 | 20.1577 |
|
95 |
-
| 0.0229 | 8.7351 | 10500 | 0.2930 | 21.1019 |
|
96 |
-
| 0.0217 | 9.1508 | 11000 | 0.3086 | 20.9874 |
|
97 |
-
| 0.0168 | 9.5666 | 11500 | 0.3026 | 20.7847 |
|
98 |
-
| 0.0162 | 9.9823 | 12000 | 0.3144 | 20.7734 |
|
99 |
|
100 |
|
101 |
### Framework versions
|
|
|
26 |
metrics:
|
27 |
- name: Wer
|
28 |
type: wer
|
29 |
+
value: 20.45616669795382
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
36 |
|
37 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
|
38 |
It achieves the following results on the evaluation set:
|
39 |
+
- Loss: 0.2601
|
40 |
+
- Wer: 20.4562
|
41 |
|
42 |
## Model description
|
43 |
|
|
|
56 |
### Training hyperparameters
|
57 |
|
58 |
The following hyperparameters were used during training:
|
59 |
+
- learning_rate: 1e-05
|
60 |
- train_batch_size: 2
|
61 |
- eval_batch_size: 8
|
62 |
- seed: 42
|
63 |
+
- gradient_accumulation_steps: 16
|
64 |
+
- total_train_batch_size: 32
|
65 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
66 |
- lr_scheduler_type: linear
|
67 |
- lr_scheduler_warmup_steps: 500
|
68 |
+
- training_steps: 5000
|
69 |
- mixed_precision_training: Native AMP
|
70 |
|
71 |
### Training results
|
72 |
|
73 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
74 |
+
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
75 |
+
| 0.5279 | 0.4158 | 500 | 0.3311 | 27.6591 |
|
76 |
+
| 0.2513 | 0.8316 | 1000 | 0.2866 | 24.5504 |
|
77 |
+
| 0.1673 | 1.2478 | 1500 | 0.2735 | 22.8928 |
|
78 |
+
| 0.1324 | 1.6635 | 2000 | 0.2645 | 21.8153 |
|
79 |
+
| 0.1138 | 2.0797 | 2500 | 0.2613 | 21.3816 |
|
80 |
+
| 0.064 | 2.4955 | 3000 | 0.2651 | 21.0006 |
|
81 |
+
| 0.0615 | 2.9113 | 3500 | 0.2601 | 20.4562 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
### Framework versions
|