mohammed commited on
Commit
189334a
1 Parent(s): f4e1847

End of training

Browse files
Files changed (1) hide show
  1. README.md +16 -33
README.md CHANGED
@@ -26,7 +26,7 @@ model-index:
26
  metrics:
27
  - name: Wer
28
  type: wer
29
- value: 20.773418434390837
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -36,8 +36,8 @@ should probably proofread and complete it, then remove this comment. -->
36
 
37
  This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 0.3144
40
- - Wer: 20.7734
41
 
42
  ## Model description
43
 
@@ -56,46 +56,29 @@ More information needed
56
  ### Training hyperparameters
57
 
58
  The following hyperparameters were used during training:
59
- - learning_rate: 5e-07
60
  - train_batch_size: 2
61
  - eval_batch_size: 8
62
  - seed: 42
63
- - gradient_accumulation_steps: 8
64
- - total_train_batch_size: 16
65
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
66
  - lr_scheduler_type: linear
67
  - lr_scheduler_warmup_steps: 500
68
- - training_steps: 10000
69
  - mixed_precision_training: Native AMP
70
 
71
  ### Training results
72
 
73
- | Training Loss | Epoch | Step | Validation Loss | Wer |
74
- |:-------------:|:------:|:-----:|:---------------:|:-------:|
75
- | 0.5507 | 0.2079 | 500 | 0.3695 | 29.2247 |
76
- | 0.2802 | 0.4158 | 1000 | 0.3148 | 26.7299 |
77
- | 0.2408 | 0.6236 | 1500 | 0.2970 | 24.2538 |
78
- | 0.2208 | 0.8315 | 2000 | 0.2728 | 23.3020 |
79
- | 0.1811 | 1.0394 | 2500 | 0.2665 | 22.3935 |
80
- | 0.1096 | 1.2473 | 3000 | 0.2641 | 21.8998 |
81
- | 0.1068 | 1.4552 | 3500 | 0.2568 | 21.6125 |
82
- | 0.1042 | 1.6630 | 4000 | 0.2516 | 21.0512 |
83
- | 0.1001 | 1.8709 | 4500 | 0.2472 | 20.4092 |
84
- | 0.0827 | 2.0788 | 5000 | 0.2469 | 20.3848 |
85
- | 0.0672 | 2.2869 | 5500 | 0.2665 | 21.1357 |
86
- | 0.0673 | 2.4948 | 6000 | 0.2674 | 21.5093 |
87
- | 0.0681 | 2.7026 | 6500 | 0.2635 | 20.6101 |
88
- | 0.0661 | 2.9105 | 7000 | 0.2602 | 20.5069 |
89
- | 0.0494 | 3.1184 | 7500 | 0.2708 | 20.5444 |
90
- | 0.0352 | 3.3263 | 8000 | 0.2688 | 20.5181 |
91
- | 0.0338 | 3.5341 | 8500 | 0.2717 | 20.2515 |
92
- | 0.0318 | 3.7420 | 9000 | 0.2723 | 20.2403 |
93
- | 0.0309 | 3.9499 | 9500 | 0.2711 | 20.1727 |
94
- | 0.022 | 4.1578 | 10000 | 0.2758 | 20.1577 |
95
- | 0.0229 | 8.7351 | 10500 | 0.2930 | 21.1019 |
96
- | 0.0217 | 9.1508 | 11000 | 0.3086 | 20.9874 |
97
- | 0.0168 | 9.5666 | 11500 | 0.3026 | 20.7847 |
98
- | 0.0162 | 9.9823 | 12000 | 0.3144 | 20.7734 |
99
 
100
 
101
  ### Framework versions
 
26
  metrics:
27
  - name: Wer
28
  type: wer
29
+ value: 20.45616669795382
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
36
 
37
  This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
38
  It achieves the following results on the evaluation set:
39
+ - Loss: 0.2601
40
+ - Wer: 20.4562
41
 
42
  ## Model description
43
 
 
56
  ### Training hyperparameters
57
 
58
  The following hyperparameters were used during training:
59
+ - learning_rate: 1e-05
60
  - train_batch_size: 2
61
  - eval_batch_size: 8
62
  - seed: 42
63
+ - gradient_accumulation_steps: 16
64
+ - total_train_batch_size: 32
65
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
66
  - lr_scheduler_type: linear
67
  - lr_scheduler_warmup_steps: 500
68
+ - training_steps: 5000
69
  - mixed_precision_training: Native AMP
70
 
71
  ### Training results
72
 
73
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
74
+ |:-------------:|:------:|:----:|:---------------:|:-------:|
75
+ | 0.5279 | 0.4158 | 500 | 0.3311 | 27.6591 |
76
+ | 0.2513 | 0.8316 | 1000 | 0.2866 | 24.5504 |
77
+ | 0.1673 | 1.2478 | 1500 | 0.2735 | 22.8928 |
78
+ | 0.1324 | 1.6635 | 2000 | 0.2645 | 21.8153 |
79
+ | 0.1138 | 2.0797 | 2500 | 0.2613 | 21.3816 |
80
+ | 0.064 | 2.4955 | 3000 | 0.2651 | 21.0006 |
81
+ | 0.0615 | 2.9113 | 3500 | 0.2601 | 20.4562 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
 
84
  ### Framework versions