--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small AR - Mohammed Bakheet results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ar split: test args: ar metrics: - name: Wer type: wer value: 20.773418434390837 --- # Whisper Small AR - Mohammed Bakheet This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3144 - Wer: 20.7734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.5507 | 0.2079 | 500 | 0.3695 | 29.2247 | | 0.2802 | 0.4158 | 1000 | 0.3148 | 26.7299 | | 0.2408 | 0.6236 | 1500 | 0.2970 | 24.2538 | | 0.2208 | 0.8315 | 2000 | 0.2728 | 23.3020 | | 0.1811 | 1.0394 | 2500 | 0.2665 | 22.3935 | | 0.1096 | 1.2473 | 3000 | 0.2641 | 21.8998 | | 0.1068 | 1.4552 | 3500 | 0.2568 | 21.6125 | | 0.1042 | 1.6630 | 4000 | 0.2516 | 21.0512 | | 0.1001 | 1.8709 | 4500 | 0.2472 | 20.4092 | | 0.0827 | 2.0788 | 5000 | 0.2469 | 20.3848 | | 0.0672 | 2.2869 | 5500 | 0.2665 | 21.1357 | | 0.0673 | 2.4948 | 6000 | 0.2674 | 21.5093 | | 0.0681 | 2.7026 | 6500 | 0.2635 | 20.6101 | | 0.0661 | 2.9105 | 7000 | 0.2602 | 20.5069 | | 0.0494 | 3.1184 | 7500 | 0.2708 | 20.5444 | | 0.0352 | 3.3263 | 8000 | 0.2688 | 20.5181 | | 0.0338 | 3.5341 | 8500 | 0.2717 | 20.2515 | | 0.0318 | 3.7420 | 9000 | 0.2723 | 20.2403 | | 0.0309 | 3.9499 | 9500 | 0.2711 | 20.1727 | | 0.022 | 4.1578 | 10000 | 0.2758 | 20.1577 | | 0.0229 | 8.7351 | 10500 | 0.2930 | 21.1019 | | 0.0217 | 9.1508 | 11000 | 0.3086 | 20.9874 | | 0.0168 | 9.5666 | 11500 | 0.3026 | 20.7847 | | 0.0162 | 9.9823 | 12000 | 0.3144 | 20.7734 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3