Upload test_llava_ort.py with huggingface_hub
Browse files- test_llava_ort.py +257 -0
test_llava_ort.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Optional, Tuple
|
3 |
+
|
4 |
+
import onnxruntime as onnxrt
|
5 |
+
import requests
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
from transformers import AutoConfig, AutoProcessor, GenerationConfig, PreTrainedModel
|
9 |
+
from transformers.generation import GenerationMixin
|
10 |
+
from transformers.modeling_outputs import BaseModelOutput, CausalLMOutputWithPast
|
11 |
+
|
12 |
+
from optimum.utils import NormalizedConfigManager
|
13 |
+
|
14 |
+
|
15 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
16 |
+
|
17 |
+
|
18 |
+
device = torch.device("cpu")
|
19 |
+
|
20 |
+
|
21 |
+
model_name = "llava-1.5-7b-hf/"
|
22 |
+
|
23 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
24 |
+
config = AutoConfig.from_pretrained(model_name)
|
25 |
+
|
26 |
+
prompt = "<image>\nUSER: What's the content of the image?\nASSISTANT:"
|
27 |
+
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
28 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
29 |
+
|
30 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
31 |
+
|
32 |
+
|
33 |
+
class ORTModel(torch.nn.Module):
|
34 |
+
def __init__(self, path, config):
|
35 |
+
super().__init__()
|
36 |
+
self._device = device
|
37 |
+
self.config = config
|
38 |
+
self.session = onnxrt.InferenceSession(path, providers=["CPUExecutionProvider"])
|
39 |
+
|
40 |
+
self.input_names = {input_key.name: idx for idx, input_key in enumerate(self.session.get_inputs())}
|
41 |
+
self.output_names = {output_key.name: idx for idx, output_key in enumerate(self.session.get_outputs())}
|
42 |
+
|
43 |
+
|
44 |
+
class ORTEncoder(ORTModel):
|
45 |
+
def forward(
|
46 |
+
self,
|
47 |
+
input_ids: torch.FloatTensor,
|
48 |
+
pixel_values: torch.FloatTensor,
|
49 |
+
attention_mask: torch.LongTensor,
|
50 |
+
**kwargs,
|
51 |
+
) -> BaseModelOutput:
|
52 |
+
onnx_inputs = {
|
53 |
+
"input_ids": input_ids.cpu().detach().numpy(),
|
54 |
+
"pixel_values": pixel_values.cpu().detach().numpy(),
|
55 |
+
"attention_mask": attention_mask.cpu().detach().numpy(),
|
56 |
+
}
|
57 |
+
|
58 |
+
# Run inference
|
59 |
+
outputs = self.session.run(None, onnx_inputs)
|
60 |
+
|
61 |
+
for i, output in enumerate(outputs):
|
62 |
+
outputs[i] = torch.from_numpy(output).to(self._device)
|
63 |
+
|
64 |
+
return (
|
65 |
+
outputs[self.output_names["inputs_embeds"]],
|
66 |
+
outputs[self.output_names["decoder_attention_mask"]],
|
67 |
+
outputs[self.output_names["position_ids"]],
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
class ORTDecoderProcessor(ORTModel):
|
72 |
+
def forward(
|
73 |
+
self,
|
74 |
+
input_ids: torch.FloatTensor,
|
75 |
+
attention_mask: torch.LongTensor,
|
76 |
+
past_key_value: torch.FloatTensor,
|
77 |
+
**kwargs,
|
78 |
+
) -> BaseModelOutput:
|
79 |
+
onnx_inputs = {
|
80 |
+
"input_ids": input_ids.cpu().detach().numpy(),
|
81 |
+
"attention_mask": attention_mask.cpu().detach().numpy(),
|
82 |
+
"past_key_values.0.key": past_key_value.cpu().detach().numpy(),
|
83 |
+
}
|
84 |
+
|
85 |
+
# Run inference
|
86 |
+
outputs = self.session.run(None, onnx_inputs)
|
87 |
+
|
88 |
+
for i, output in enumerate(outputs):
|
89 |
+
outputs[i] = torch.from_numpy(output).to(self._device)
|
90 |
+
|
91 |
+
return (
|
92 |
+
outputs[self.output_names["inputs_embeds"]],
|
93 |
+
outputs[self.output_names["decoder_attention_mask"]],
|
94 |
+
outputs[self.output_names["position_ids"]],
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
class ORTDecoder(ORTModel):
|
99 |
+
def __init__(self, path, config):
|
100 |
+
super().__init__(path, config)
|
101 |
+
|
102 |
+
self.normalized_config = NormalizedConfigManager.get_normalized_config_class(config.text_config.model_type)(
|
103 |
+
config.text_config
|
104 |
+
)
|
105 |
+
self.generation_config = GenerationConfig.from_model_config(config)
|
106 |
+
|
107 |
+
self.key_value_input_names = [key for key in self.input_names if (".key" in key) or (".value" in key)]
|
108 |
+
self.key_value_output_names = [key for key in self.output_names if (".key" in key) or (".value" in key)]
|
109 |
+
|
110 |
+
self.num_pkv = 2
|
111 |
+
|
112 |
+
def prepare_pkv(self, batch_size: int):
|
113 |
+
if self.config.text_config.model_type in {"mistral", "llama"}:
|
114 |
+
num_attention_heads = self.normalized_config.num_key_value_heads
|
115 |
+
else:
|
116 |
+
num_attention_heads = self.normalized_config.num_attention_heads
|
117 |
+
|
118 |
+
embed_size_per_head = self.normalized_config.hidden_size // self.normalized_config.num_attention_heads
|
119 |
+
|
120 |
+
shape = (batch_size, num_attention_heads, 0, embed_size_per_head)
|
121 |
+
key_or_value = torch.zeros(shape, dtype=torch.float32)
|
122 |
+
|
123 |
+
past_key_values = tuple(key_or_value for _ in range(len(self.key_value_input_names)))
|
124 |
+
|
125 |
+
return past_key_values
|
126 |
+
|
127 |
+
def forward(
|
128 |
+
self,
|
129 |
+
attention_mask: torch.LongTensor,
|
130 |
+
position_ids: torch.LongTensor,
|
131 |
+
inputs_embeds: torch.FloatTensor,
|
132 |
+
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
|
133 |
+
) -> CausalLMOutputWithPast:
|
134 |
+
onnx_inputs = {
|
135 |
+
"attention_mask": attention_mask.cpu().detach().numpy(),
|
136 |
+
"position_ids": position_ids.cpu().detach().numpy(),
|
137 |
+
"inputs_embeds": inputs_embeds.cpu().detach().numpy(),
|
138 |
+
}
|
139 |
+
|
140 |
+
if past_key_values is None:
|
141 |
+
past_key_values = self.prepare_pkv(inputs_embeds.shape[0])
|
142 |
+
else:
|
143 |
+
past_key_values = tuple(
|
144 |
+
past_key_value for pkv_per_layer in past_key_values for past_key_value in pkv_per_layer
|
145 |
+
)
|
146 |
+
|
147 |
+
for input_name, past_key_value in zip(self.key_value_input_names, past_key_values):
|
148 |
+
onnx_inputs[input_name] = past_key_value.cpu().detach().numpy()
|
149 |
+
|
150 |
+
# Run inference
|
151 |
+
outputs = self.session.run(None, onnx_inputs)
|
152 |
+
|
153 |
+
logits = torch.from_numpy(outputs[self.output_names["logits"]])
|
154 |
+
|
155 |
+
past_key_values = tuple(
|
156 |
+
torch.from_numpy(outputs[self.output_names[key]]) for key in self.key_value_output_names
|
157 |
+
)
|
158 |
+
|
159 |
+
past_key_values = tuple(
|
160 |
+
past_key_values[i : i + self.num_pkv] for i in range(0, len(past_key_values), self.num_pkv)
|
161 |
+
)
|
162 |
+
|
163 |
+
return CausalLMOutputWithPast(logits=logits, past_key_values=past_key_values)
|
164 |
+
|
165 |
+
|
166 |
+
class ORTModelForLLava(PreTrainedModel, GenerationMixin):
|
167 |
+
def __init__(self, *args, **kwargs):
|
168 |
+
config = AutoConfig.from_pretrained(model_name)
|
169 |
+
super().__init__(config)
|
170 |
+
|
171 |
+
self.config = config
|
172 |
+
self._device = device
|
173 |
+
|
174 |
+
self.vision_tower = ORTEncoder(model_name + "encoder_model.onnx", config)
|
175 |
+
self.language_model = ORTDecoder(model_name + "decoder_model.onnx", config)
|
176 |
+
self.decoder_input_processor = ORTDecoderProcessor(model_name + "decoder_input_processor_model.onnx", config)
|
177 |
+
|
178 |
+
def forward(
|
179 |
+
self,
|
180 |
+
input_ids: torch.LongTensor = None,
|
181 |
+
pixel_values: torch.FloatTensor = None,
|
182 |
+
attention_mask: Optional[torch.Tensor] = None,
|
183 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
184 |
+
**kwargs,
|
185 |
+
) -> CausalLMOutputWithPast:
|
186 |
+
if past_key_values is None:
|
187 |
+
inputs_embeds, attention_mask, position_ids = self.vision_tower(
|
188 |
+
input_ids=input_ids,
|
189 |
+
pixel_values=pixel_values,
|
190 |
+
attention_mask=attention_mask,
|
191 |
+
)
|
192 |
+
else:
|
193 |
+
inputs_embeds, attention_mask, position_ids = self.decoder_input_processor(
|
194 |
+
input_ids=input_ids,
|
195 |
+
attention_mask=attention_mask,
|
196 |
+
past_key_value=past_key_values[0][0][:, :, :, 0],
|
197 |
+
)
|
198 |
+
|
199 |
+
# Decode
|
200 |
+
decoder_outputs = self.language_model(
|
201 |
+
attention_mask=attention_mask,
|
202 |
+
position_ids=position_ids,
|
203 |
+
inputs_embeds=inputs_embeds,
|
204 |
+
past_key_values=past_key_values,
|
205 |
+
)
|
206 |
+
|
207 |
+
return decoder_outputs
|
208 |
+
|
209 |
+
def can_generate(self):
|
210 |
+
return True
|
211 |
+
|
212 |
+
def prepare_inputs_for_generation(
|
213 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs
|
214 |
+
):
|
215 |
+
if past_key_values is not None:
|
216 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
217 |
+
|
218 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
219 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
220 |
+
elif past_length < input_ids.shape[1]:
|
221 |
+
input_ids = input_ids[:, past_length:]
|
222 |
+
elif self.config.image_token_index in input_ids:
|
223 |
+
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
224 |
+
if cache_length < past_length and attention_mask is not None:
|
225 |
+
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
|
226 |
+
|
227 |
+
model_inputs = {"input_ids": input_ids}
|
228 |
+
|
229 |
+
model_inputs.update(
|
230 |
+
{
|
231 |
+
"past_key_values": past_key_values,
|
232 |
+
"use_cache": kwargs.get("use_cache"),
|
233 |
+
"attention_mask": attention_mask,
|
234 |
+
"pixel_values": pixel_values,
|
235 |
+
}
|
236 |
+
)
|
237 |
+
return model_inputs
|
238 |
+
|
239 |
+
@property
|
240 |
+
def device(self) -> torch.device:
|
241 |
+
return self._device
|
242 |
+
|
243 |
+
@device.setter
|
244 |
+
def device(self, value: torch.device):
|
245 |
+
self._device = value
|
246 |
+
|
247 |
+
def to(self, device):
|
248 |
+
self.device = device
|
249 |
+
return self
|
250 |
+
|
251 |
+
|
252 |
+
model = ORTModelForLLava()
|
253 |
+
|
254 |
+
generated_ids = model.generate(**inputs, max_length=30)
|
255 |
+
out = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
256 |
+
|
257 |
+
print(out)
|