katielink commited on
Commit
6cd5d50
·
1 Parent(s): 509db6f

fix inference folder error

Browse files
README.md CHANGED
@@ -27,11 +27,7 @@ An example result from inference is shown below:
27
  **This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [BraTS 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865).**
28
 
29
  ## MONAI Generative Model Dependencies
30
- [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels) can be installed by
31
- ```
32
- pip install lpips==0.1.4
33
- pip install git+https://github.com/Project-MONAI/GenerativeModels.git@0.2.1
34
- ```
35
 
36
  ## Data
37
  The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
 
27
  **This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [BraTS 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865).**
28
 
29
  ## MONAI Generative Model Dependencies
30
+ This bundle requires to install [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels).
 
 
 
 
31
 
32
  ## Data
33
  The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
configs/inference.json CHANGED
@@ -103,6 +103,7 @@
103
  "generated_image_np": "$@generated_image[0,0].cpu().numpy().transpose(1, 0)[::-1, ::-1]",
104
  "img_pil": "$Image.fromarray(visualize_2d_image(@generated_image_np), 'RGB')",
105
  "run": [
 
106
  "$@img_pil.save(@output_dir+'/synimg_'+@output_postfix+'.png')"
107
  ]
108
  }
 
103
  "generated_image_np": "$@generated_image[0,0].cpu().numpy().transpose(1, 0)[::-1, ::-1]",
104
  "img_pil": "$Image.fromarray(visualize_2d_image(@generated_image_np), 'RGB')",
105
  "run": [
106
+ "$@create_output_dir",
107
  "$@img_pil.save(@output_dir+'/synimg_'+@output_postfix+'.png')"
108
  ]
109
  }
configs/inference_autoencoder.json CHANGED
@@ -8,7 +8,7 @@
8
  ],
9
  "bundle_root": ".",
10
  "model_dir": "$@bundle_root + '/models'",
11
- "dataset_dir": "@bundle_root",
12
  "output_dir": "$@bundle_root + '/output'",
13
  "create_output_dir": "$Path(@output_dir).mkdir(exist_ok=True)",
14
  "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
 
8
  ],
9
  "bundle_root": ".",
10
  "model_dir": "$@bundle_root + '/models'",
11
+ "dataset_dir": "/workspace/data/medical",
12
  "output_dir": "$@bundle_root + '/output'",
13
  "create_output_dir": "$Path(@output_dir).mkdir(exist_ok=True)",
14
  "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
configs/metadata.json CHANGED
@@ -1,10 +1,11 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_generator_ldm_20230507.json",
3
- "version": "1.0.0",
4
  "changelog": {
 
5
  "1.0.0": "Initial release"
6
  },
7
- "monai_version": "1.2.0rc5",
8
  "pytorch_version": "1.13.1",
9
  "numpy_version": "1.22.2",
10
  "optional_packages_version": {
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_generator_ldm_20230507.json",
3
+ "version": "1.0.1",
4
  "changelog": {
5
+ "1.0.1": "fix inference folder error",
6
  "1.0.0": "Initial release"
7
  },
8
+ "monai_version": "1.2.0rc7",
9
  "pytorch_version": "1.13.1",
10
  "numpy_version": "1.22.2",
11
  "optional_packages_version": {
configs/train_autoencoder.json CHANGED
@@ -8,7 +8,7 @@
8
  "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
9
  "ckpt_dir": "$@bundle_root + '/models'",
10
  "tf_dir": "$@bundle_root + '/eval'",
11
- "dataset_dir": "@bundle_root",
12
  "pretrained": false,
13
  "perceptual_loss_model_weights_path": null,
14
  "train_batch_size_img": 1,
 
8
  "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
9
  "ckpt_dir": "$@bundle_root + '/models'",
10
  "tf_dir": "$@bundle_root + '/eval'",
11
+ "dataset_dir": "/workspace/data/medical",
12
  "pretrained": false,
13
  "perceptual_loss_model_weights_path": null,
14
  "train_batch_size_img": 1,
configs/train_diffusion.json CHANGED
@@ -108,7 +108,7 @@
108
  "section": "training",
109
  "cache_rate": 1.0,
110
  "num_workers": 8,
111
- "download": "@download_brats",
112
  "transform": "@train#preprocessing"
113
  },
114
  "dataloader": {
 
108
  "section": "training",
109
  "cache_rate": 1.0,
110
  "num_workers": 8,
111
+ "download": false,
112
  "transform": "@train#preprocessing"
113
  },
114
  "dataloader": {
docs/README.md CHANGED
@@ -20,11 +20,7 @@ An example result from inference is shown below:
20
  **This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [BraTS 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865).**
21
 
22
  ## MONAI Generative Model Dependencies
23
- [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels) can be installed by
24
- ```
25
- pip install lpips==0.1.4
26
- pip install git+https://github.com/Project-MONAI/GenerativeModels.git@0.2.1
27
- ```
28
 
29
  ## Data
30
  The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
 
20
  **This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [BraTS 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865).**
21
 
22
  ## MONAI Generative Model Dependencies
23
+ This bundle requires to install [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels).
 
 
 
 
24
 
25
  ## Data
26
  The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.