fix inference folder error
Browse files- README.md +1 -5
- configs/inference.json +1 -0
- configs/inference_autoencoder.json +1 -1
- configs/metadata.json +3 -2
- configs/train_autoencoder.json +1 -1
- configs/train_diffusion.json +1 -1
- docs/README.md +1 -5
README.md
CHANGED
@@ -27,11 +27,7 @@ An example result from inference is shown below:
|
|
27 |
**This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [BraTS 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865).**
|
28 |
|
29 |
## MONAI Generative Model Dependencies
|
30 |
-
[MONAI generative models](https://github.com/Project-MONAI/GenerativeModels)
|
31 |
-
```
|
32 |
-
pip install lpips==0.1.4
|
33 |
-
pip install git+https://github.com/Project-MONAI/GenerativeModels.git@0.2.1
|
34 |
-
```
|
35 |
|
36 |
## Data
|
37 |
The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
|
|
|
27 |
**This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [BraTS 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865).**
|
28 |
|
29 |
## MONAI Generative Model Dependencies
|
30 |
+
This bundle requires to install [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels).
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Data
|
33 |
The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
|
configs/inference.json
CHANGED
@@ -103,6 +103,7 @@
|
|
103 |
"generated_image_np": "$@generated_image[0,0].cpu().numpy().transpose(1, 0)[::-1, ::-1]",
|
104 |
"img_pil": "$Image.fromarray(visualize_2d_image(@generated_image_np), 'RGB')",
|
105 |
"run": [
|
|
|
106 |
"$@img_pil.save(@output_dir+'/synimg_'+@output_postfix+'.png')"
|
107 |
]
|
108 |
}
|
|
|
103 |
"generated_image_np": "$@generated_image[0,0].cpu().numpy().transpose(1, 0)[::-1, ::-1]",
|
104 |
"img_pil": "$Image.fromarray(visualize_2d_image(@generated_image_np), 'RGB')",
|
105 |
"run": [
|
106 |
+
"$@create_output_dir",
|
107 |
"$@img_pil.save(@output_dir+'/synimg_'+@output_postfix+'.png')"
|
108 |
]
|
109 |
}
|
configs/inference_autoencoder.json
CHANGED
@@ -8,7 +8,7 @@
|
|
8 |
],
|
9 |
"bundle_root": ".",
|
10 |
"model_dir": "$@bundle_root + '/models'",
|
11 |
-
"dataset_dir": "
|
12 |
"output_dir": "$@bundle_root + '/output'",
|
13 |
"create_output_dir": "$Path(@output_dir).mkdir(exist_ok=True)",
|
14 |
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
|
|
8 |
],
|
9 |
"bundle_root": ".",
|
10 |
"model_dir": "$@bundle_root + '/models'",
|
11 |
+
"dataset_dir": "/workspace/data/medical",
|
12 |
"output_dir": "$@bundle_root + '/output'",
|
13 |
"create_output_dir": "$Path(@output_dir).mkdir(exist_ok=True)",
|
14 |
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
configs/metadata.json
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_generator_ldm_20230507.json",
|
3 |
-
"version": "1.0.
|
4 |
"changelog": {
|
|
|
5 |
"1.0.0": "Initial release"
|
6 |
},
|
7 |
-
"monai_version": "1.2.
|
8 |
"pytorch_version": "1.13.1",
|
9 |
"numpy_version": "1.22.2",
|
10 |
"optional_packages_version": {
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_generator_ldm_20230507.json",
|
3 |
+
"version": "1.0.1",
|
4 |
"changelog": {
|
5 |
+
"1.0.1": "fix inference folder error",
|
6 |
"1.0.0": "Initial release"
|
7 |
},
|
8 |
+
"monai_version": "1.2.0rc7",
|
9 |
"pytorch_version": "1.13.1",
|
10 |
"numpy_version": "1.22.2",
|
11 |
"optional_packages_version": {
|
configs/train_autoencoder.json
CHANGED
@@ -8,7 +8,7 @@
|
|
8 |
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
9 |
"ckpt_dir": "$@bundle_root + '/models'",
|
10 |
"tf_dir": "$@bundle_root + '/eval'",
|
11 |
-
"dataset_dir": "
|
12 |
"pretrained": false,
|
13 |
"perceptual_loss_model_weights_path": null,
|
14 |
"train_batch_size_img": 1,
|
|
|
8 |
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
9 |
"ckpt_dir": "$@bundle_root + '/models'",
|
10 |
"tf_dir": "$@bundle_root + '/eval'",
|
11 |
+
"dataset_dir": "/workspace/data/medical",
|
12 |
"pretrained": false,
|
13 |
"perceptual_loss_model_weights_path": null,
|
14 |
"train_batch_size_img": 1,
|
configs/train_diffusion.json
CHANGED
@@ -108,7 +108,7 @@
|
|
108 |
"section": "training",
|
109 |
"cache_rate": 1.0,
|
110 |
"num_workers": 8,
|
111 |
-
"download":
|
112 |
"transform": "@train#preprocessing"
|
113 |
},
|
114 |
"dataloader": {
|
|
|
108 |
"section": "training",
|
109 |
"cache_rate": 1.0,
|
110 |
"num_workers": 8,
|
111 |
+
"download": false,
|
112 |
"transform": "@train#preprocessing"
|
113 |
},
|
114 |
"dataloader": {
|
docs/README.md
CHANGED
@@ -20,11 +20,7 @@ An example result from inference is shown below:
|
|
20 |
**This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [BraTS 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865).**
|
21 |
|
22 |
## MONAI Generative Model Dependencies
|
23 |
-
[MONAI generative models](https://github.com/Project-MONAI/GenerativeModels)
|
24 |
-
```
|
25 |
-
pip install lpips==0.1.4
|
26 |
-
pip install git+https://github.com/Project-MONAI/GenerativeModels.git@0.2.1
|
27 |
-
```
|
28 |
|
29 |
## Data
|
30 |
The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
|
|
|
20 |
**This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [BraTS 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865).**
|
21 |
|
22 |
## MONAI Generative Model Dependencies
|
23 |
+
This bundle requires to install [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels).
|
|
|
|
|
|
|
|
|
24 |
|
25 |
## Data
|
26 |
The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
|