{ "imports": [ "$import torch", "$from datetime import datetime", "$from pathlib import Path" ], "bundle_root": ".", "model_dir": "$@bundle_root + '/models'", "dataset_dir": "@bundle_root", "output_dir": "$@bundle_root + '/output'", "create_output_dir": "$Path(@output_dir).mkdir(exist_ok=True)", "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')", "output_orig_postfix": "recon", "output_recon_postfix": "orig", "channel": 0, "spacing": [ 1.1, 1.1, 1.1 ], "spatial_dims": 3, "image_channels": 1, "latent_channels": 8, "infer_patch_size": [ 144, 176, 112 ], "autoencoder_def": { "_target_": "generative.networks.nets.AutoencoderKL", "spatial_dims": "@spatial_dims", "in_channels": "@image_channels", "out_channels": "@image_channels", "latent_channels": "@latent_channels", "num_channels": [ 64, 128, 256 ], "num_res_blocks": 2, "norm_num_groups": 32, "norm_eps": 1e-06, "attention_levels": [ false, false, false ], "with_encoder_nonlocal_attn": false, "with_decoder_nonlocal_attn": false }, "load_autoencoder_path": "$@bundle_root + '/models/model_autoencoder.pt'", "load_autoencoder": "$@autoencoder_def.load_state_dict(torch.load(@load_autoencoder_path))", "autoencoder": "$@autoencoder_def.to(@device)", "preprocessing_transforms": [ { "_target_": "LoadImaged", "keys": "image" }, { "_target_": "EnsureChannelFirstd", "keys": "image" }, { "_target_": "Lambdad", "keys": "image", "func": "$lambda x: x[@channel, :, :, :]" }, { "_target_": "AddChanneld", "keys": "image" }, { "_target_": "EnsureTyped", "keys": "image" }, { "_target_": "Orientationd", "keys": "image", "axcodes": "RAS" }, { "_target_": "Spacingd", "keys": "image", "pixdim": "@spacing", "mode": "bilinear" } ], "crop_transforms": [ { "_target_": "CenterSpatialCropd", "keys": "image", "roi_size": "@infer_patch_size" } ], "final_transforms": [ { "_target_": "ScaleIntensityRangePercentilesd", "keys": "image", "lower": 0, "upper": 99.5, "b_min": 0, "b_max": 1 } ], "preprocessing": { "_target_": "Compose", "transforms": "$@preprocessing_transforms + @crop_transforms + @final_transforms" }, "dataset": { "_target_": "monai.apps.DecathlonDataset", "root_dir": "@dataset_dir", "task": "Task01_BrainTumour", "section": "validation", "cache_rate": 0.0, "num_workers": 8, "download": false, "transform": "@preprocessing" }, "dataloader": { "_target_": "DataLoader", "dataset": "@dataset", "batch_size": 1, "shuffle": true, "num_workers": 0 }, "saver_orig": { "_target_": "SaveImage", "_requires_": "@create_output_dir", "output_dir": "@output_dir", "output_postfix": "@output_orig_postfix", "resample": false, "padding_mode": "zeros" }, "saver_recon": { "_target_": "SaveImage", "_requires_": "@create_output_dir", "output_dir": "@output_dir", "output_postfix": "@output_recon_postfix", "resample": false, "padding_mode": "zeros" }, "input_img": "$monai.utils.first(@dataloader)['image'].to(@device)", "recon_img": "$@autoencoder(@input_img)[0][0]", "run": [ "$@load_autoencoder", "$@saver_orig(@input_img[0][0])", "$@saver_recon(@recon_img)" ] }