{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.1.5", "changelog": { "0.1.5": "Fixed duplication of input output format section", "0.1.4": "Changed Readme", "0.1.3": "Change input_dim from 229 to 299", "0.1.2": "black autofix format and add name tag", "0.1.1": "update license files", "0.1.0": "complete the model package" }, "monai_version": "1.0.0", "pytorch_version": "1.12.1", "numpy_version": "1.21.2", "optional_packages_version": { "torchvision": "0.13.1" }, "name": "Breast density classification", "task": "Breast Density Classification", "description": "A pre-trained model for classifying breast images (mammograms) ", "authors": "Center for Augmented Intelligence in Imaging, Mayo Clinic Florida", "copyright": "Copyright (c) Mayo Clinic", "data_source": "Mayo Clinic ", "data_type": "Jpeg", "image_classes": "three channel data, intensity scaled to [0, 1]. A single grayscale is copied to 3 channels", "label_classes": "four classes marked as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] for the classes A, B, C and D respectively.", "pred_classes": "One hot data", "eval_metrics": { "accuracy": 0.96 }, "intended_use": "This is an example, not to be used for diagnostic purposes", "references": [ "Gupta, Vikash, et al. A multi-reconstruction study of breast density estimation using Deep Learning. arXiv preprint arXiv:2202.08238 (2022)." ], "network_data_format": { "inputs": { "image": { "type": "image", "format": "magnitude", "modality": "Mammogram", "num_channels": 3, "spatial_shape": [ 299, 299 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": false, "channel_def": { "0": "image" } } }, "outputs": { "pred": { "type": "image", "format": "labels", "dtype": "float32", "value_range": [ 0, 1 ], "num_channels": 4, "spatial_shape": [ 1, 4 ], "is_patch_data": false, "channel_def": { "0": "A", "1": "B", "2": "C", "3": "D" } } } } }