monai
medical
File size: 21,498 Bytes
618f7d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import os
import random
import sys
import time
from datetime import datetime
from typing import Sequence, Union

import monai
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
import yaml
from monai import transforms
from monai.bundle import ConfigParser
from monai.data import ThreadDataLoader, partition_dataset
from monai.inferers import sliding_window_inference
from monai.metrics import compute_meandice
from monai.utils import set_determinism
from torch.nn.parallel import DistributedDataParallel
from torch.utils.tensorboard import SummaryWriter


def run(config_file: Union[str, Sequence[str]]):
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    parser = ConfigParser()
    parser.read_config(config_file)

    arch_ckpt_path = parser["arch_ckpt_path"]
    amp = parser["amp"]
    data_file_base_dir = parser["data_file_base_dir"]
    data_list_file_path = parser["data_list_file_path"]
    determ = parser["determ"]
    learning_rate = parser["learning_rate"]
    learning_rate_arch = parser["learning_rate_arch"]
    learning_rate_milestones = np.array(parser["learning_rate_milestones"])
    num_images_per_batch = parser["num_images_per_batch"]
    num_epochs = parser["num_epochs"]  # around 20k iterations
    num_epochs_per_validation = parser["num_epochs_per_validation"]
    num_epochs_warmup = parser["num_epochs_warmup"]
    num_sw_batch_size = parser["num_sw_batch_size"]
    output_classes = parser["output_classes"]
    overlap_ratio = parser["overlap_ratio"]
    patch_size_valid = parser["patch_size_valid"]
    ram_cost_factor = parser["ram_cost_factor"]
    print("[info] GPU RAM cost factor:", ram_cost_factor)

    train_transforms = parser.get_parsed_content("transform_train")
    val_transforms = parser.get_parsed_content("transform_validation")

    # deterministic training
    if determ:
        set_determinism(seed=0)

    print("[info] number of GPUs:", torch.cuda.device_count())
    if torch.cuda.device_count() > 1:
        # initialize the distributed training process, every GPU runs in a process
        dist.init_process_group(backend="nccl", init_method="env://")
        world_size = dist.get_world_size()
    else:
        world_size = 1
    print("[info] world_size:", world_size)

    with open(data_list_file_path, "r") as f:
        json_data = json.load(f)

    list_train = json_data["training"]
    list_valid = json_data["validation"]

    # training data
    files = []
    for _i in range(len(list_train)):
        str_img = os.path.join(data_file_base_dir, list_train[_i]["image"])
        str_seg = os.path.join(data_file_base_dir, list_train[_i]["label"])

        if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)):
            continue

        files.append({"image": str_img, "label": str_seg})
    train_files = files

    random.shuffle(train_files)

    train_files_w = train_files[: len(train_files) // 2]
    if torch.cuda.device_count() > 1:
        train_files_w = partition_dataset(
            data=train_files_w, shuffle=True, num_partitions=world_size, even_divisible=True
        )[dist.get_rank()]
    print("train_files_w:", len(train_files_w))

    train_files_a = train_files[len(train_files) // 2 :]
    if torch.cuda.device_count() > 1:
        train_files_a = partition_dataset(
            data=train_files_a, shuffle=True, num_partitions=world_size, even_divisible=True
        )[dist.get_rank()]
    print("train_files_a:", len(train_files_a))

    # validation data
    files = []
    for _i in range(len(list_valid)):
        str_img = os.path.join(data_file_base_dir, list_valid[_i]["image"])
        str_seg = os.path.join(data_file_base_dir, list_valid[_i]["label"])

        if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)):
            continue

        files.append({"image": str_img, "label": str_seg})
    val_files = files

    if torch.cuda.device_count() > 1:
        val_files = partition_dataset(data=val_files, shuffle=False, num_partitions=world_size, even_divisible=False)[
            dist.get_rank()
        ]
    print("val_files:", len(val_files))

    # network architecture
    if torch.cuda.device_count() > 1:
        device = torch.device(f"cuda:{dist.get_rank()}")
    else:
        device = torch.device("cuda:0")
    torch.cuda.set_device(device)

    if torch.cuda.device_count() > 1:
        train_ds_a = monai.data.CacheDataset(
            data=train_files_a, transform=train_transforms, cache_rate=1.0, num_workers=8
        )
        train_ds_w = monai.data.CacheDataset(
            data=train_files_w, transform=train_transforms, cache_rate=1.0, num_workers=8
        )
        val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0, num_workers=2)
    else:
        train_ds_a = monai.data.CacheDataset(
            data=train_files_a, transform=train_transforms, cache_rate=0.125, num_workers=8
        )
        train_ds_w = monai.data.CacheDataset(
            data=train_files_w, transform=train_transforms, cache_rate=0.125, num_workers=8
        )
        val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms, cache_rate=0.125, num_workers=2)

    train_loader_a = ThreadDataLoader(train_ds_a, num_workers=6, batch_size=num_images_per_batch, shuffle=True)
    train_loader_w = ThreadDataLoader(train_ds_w, num_workers=6, batch_size=num_images_per_batch, shuffle=True)
    val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=1, shuffle=False)

    model = parser.get_parsed_content("network")
    dints_space = parser.get_parsed_content("dints_space")

    model = model.to(device)
    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

    post_pred = transforms.Compose(
        [transforms.EnsureType(), transforms.AsDiscrete(argmax=True, to_onehot=output_classes)]
    )
    post_label = transforms.Compose([transforms.EnsureType(), transforms.AsDiscrete(to_onehot=output_classes)])

    # loss function
    loss_func = parser.get_parsed_content("loss")

    # optimizer
    optimizer = torch.optim.SGD(
        model.weight_parameters(), lr=learning_rate * world_size, momentum=0.9, weight_decay=0.00004
    )
    arch_optimizer_a = torch.optim.Adam(
        [dints_space.log_alpha_a], lr=learning_rate_arch * world_size, betas=(0.5, 0.999), weight_decay=0.0
    )
    arch_optimizer_c = torch.optim.Adam(
        [dints_space.log_alpha_c], lr=learning_rate_arch * world_size, betas=(0.5, 0.999), weight_decay=0.0
    )

    if torch.cuda.device_count() > 1:
        model = DistributedDataParallel(model, device_ids=[device], find_unused_parameters=True)

    # amp
    if amp:
        from torch.cuda.amp import GradScaler, autocast

        scaler = GradScaler()
        if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
            print("[info] amp enabled")

    # start a typical PyTorch training
    val_interval = num_epochs_per_validation
    best_metric = -1
    best_metric_epoch = -1
    idx_iter = 0

    if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
        writer = SummaryWriter(log_dir=os.path.join(arch_ckpt_path, "Events"))

        with open(os.path.join(arch_ckpt_path, "accuracy_history.csv"), "a") as f:
            f.write("epoch\tmetric\tloss\tlr\ttime\titer\n")

    dataloader_a_iterator = iter(train_loader_a)

    start_time = time.time()
    for epoch in range(num_epochs):
        decay = 0.5 ** np.sum(
            [(epoch - num_epochs_warmup) / (num_epochs - num_epochs_warmup) > learning_rate_milestones]
        )
        lr = learning_rate * decay * world_size
        for param_group in optimizer.param_groups:
            param_group["lr"] = lr

        if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
            print("-" * 10)
            print(f"epoch {epoch + 1}/{num_epochs}")
            print("learning rate is set to {}".format(lr))

        model.train()
        epoch_loss = 0
        loss_torch = torch.zeros(2, dtype=torch.float, device=device)
        epoch_loss_arch = 0
        loss_torch_arch = torch.zeros(2, dtype=torch.float, device=device)
        step = 0

        for batch_data in train_loader_w:
            step += 1
            inputs, labels = batch_data["image"].to(device), batch_data["label"].to(device)
            if world_size == 1:
                for _ in model.weight_parameters():
                    _.requires_grad = True
            else:
                for _ in model.module.weight_parameters():
                    _.requires_grad = True
            dints_space.log_alpha_a.requires_grad = False
            dints_space.log_alpha_c.requires_grad = False

            optimizer.zero_grad()

            if amp:
                with autocast():
                    outputs = model(inputs)
                    if output_classes == 2:
                        loss = loss_func(torch.flip(outputs, dims=[1]), 1 - labels)
                    else:
                        loss = loss_func(outputs, labels)

                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
            else:
                outputs = model(inputs)
                if output_classes == 2:
                    loss = loss_func(torch.flip(outputs, dims=[1]), 1 - labels)
                else:
                    loss = loss_func(outputs, labels)
                loss.backward()
                optimizer.step()

            epoch_loss += loss.item()
            loss_torch[0] += loss.item()
            loss_torch[1] += 1.0
            epoch_len = len(train_loader_w)
            idx_iter += 1

            if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
                print("[{0}] ".format(str(datetime.now())[:19]) + f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
                writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step)

            if epoch < num_epochs_warmup:
                continue

            try:
                sample_a = next(dataloader_a_iterator)
            except StopIteration:
                dataloader_a_iterator = iter(train_loader_a)
                sample_a = next(dataloader_a_iterator)
            inputs_search, labels_search = (sample_a["image"].to(device), sample_a["label"].to(device))
            if world_size == 1:
                for _ in model.weight_parameters():
                    _.requires_grad = False
            else:
                for _ in model.module.weight_parameters():
                    _.requires_grad = False
            dints_space.log_alpha_a.requires_grad = True
            dints_space.log_alpha_c.requires_grad = True

            # linear increase topology and RAM loss
            entropy_alpha_c = torch.tensor(0.0).to(device)
            entropy_alpha_a = torch.tensor(0.0).to(device)
            ram_cost_full = torch.tensor(0.0).to(device)
            ram_cost_usage = torch.tensor(0.0).to(device)
            ram_cost_loss = torch.tensor(0.0).to(device)
            topology_loss = torch.tensor(0.0).to(device)

            probs_a, arch_code_prob_a = dints_space.get_prob_a(child=True)
            entropy_alpha_a = -((probs_a) * torch.log(probs_a + 1e-5)).mean()
            entropy_alpha_c = -(
                F.softmax(dints_space.log_alpha_c, dim=-1) * F.log_softmax(dints_space.log_alpha_c, dim=-1)
            ).mean()
            topology_loss = dints_space.get_topology_entropy(probs_a)

            ram_cost_full = dints_space.get_ram_cost_usage(inputs.shape, full=True)
            ram_cost_usage = dints_space.get_ram_cost_usage(inputs.shape)
            ram_cost_loss = torch.abs(ram_cost_factor - ram_cost_usage / ram_cost_full)

            arch_optimizer_a.zero_grad()
            arch_optimizer_c.zero_grad()

            combination_weights = (epoch - num_epochs_warmup) / (num_epochs - num_epochs_warmup)

            if amp:
                with autocast():
                    outputs_search = model(inputs_search)
                    if output_classes == 2:
                        loss = loss_func(torch.flip(outputs_search, dims=[1]), 1 - labels_search)
                    else:
                        loss = loss_func(outputs_search, labels_search)

                    loss += combination_weights * (
                        (entropy_alpha_a + entropy_alpha_c) + ram_cost_loss + 0.001 * topology_loss
                    )

                scaler.scale(loss).backward()
                scaler.step(arch_optimizer_a)
                scaler.step(arch_optimizer_c)
                scaler.update()
            else:
                outputs_search = model(inputs_search)
                if output_classes == 2:
                    loss = loss_func(torch.flip(outputs_search, dims=[1]), 1 - labels_search)
                else:
                    loss = loss_func(outputs_search, labels_search)

                loss += 1.0 * (
                    combination_weights * (entropy_alpha_a + entropy_alpha_c) + ram_cost_loss + 0.001 * topology_loss
                )

                loss.backward()
                arch_optimizer_a.step()
                arch_optimizer_c.step()

            epoch_loss_arch += loss.item()
            loss_torch_arch[0] += loss.item()
            loss_torch_arch[1] += 1.0

            if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
                print(
                    "[{0}] ".format(str(datetime.now())[:19])
                    + f"{step}/{epoch_len}, train_loss_arch: {loss.item():.4f}"
                )
                writer.add_scalar("train_loss_arch", loss.item(), epoch_len * epoch + step)

        # synchronizes all processes and reduce results
        if torch.cuda.device_count() > 1:
            dist.barrier()
            dist.all_reduce(loss_torch, op=torch.distributed.ReduceOp.SUM)

        loss_torch = loss_torch.tolist()
        loss_torch_arch = loss_torch_arch.tolist()
        if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
            loss_torch_epoch = loss_torch[0] / loss_torch[1]
            print(
                f"epoch {epoch + 1} average loss: {loss_torch_epoch:.4f}, "
                f"best mean dice: {best_metric:.4f} at epoch {best_metric_epoch}"
            )

            if epoch >= num_epochs_warmup:
                loss_torch_arch_epoch = loss_torch_arch[0] / loss_torch_arch[1]
                print(
                    f"epoch {epoch + 1} average arch loss: {loss_torch_arch_epoch:.4f}, "
                    f"best mean dice: {best_metric:.4f} at epoch {best_metric_epoch}"
                )

        if (epoch + 1) % val_interval == 0 or (epoch + 1) == num_epochs:
            torch.cuda.empty_cache()
            model.eval()
            with torch.no_grad():
                metric = torch.zeros((output_classes - 1) * 2, dtype=torch.float, device=device)
                metric_sum = 0.0
                metric_count = 0
                metric_mat = []
                val_images = None
                val_labels = None
                val_outputs = None

                _index = 0
                for val_data in val_loader:
                    val_images = val_data["image"].to(device)
                    val_labels = val_data["label"].to(device)

                    roi_size = patch_size_valid
                    sw_batch_size = num_sw_batch_size

                    if amp:
                        with torch.cuda.amp.autocast():
                            pred = sliding_window_inference(
                                val_images,
                                roi_size,
                                sw_batch_size,
                                lambda x: model(x),
                                mode="gaussian",
                                overlap=overlap_ratio,
                            )
                    else:
                        pred = sliding_window_inference(
                            val_images,
                            roi_size,
                            sw_batch_size,
                            lambda x: model(x),
                            mode="gaussian",
                            overlap=overlap_ratio,
                        )
                    val_outputs = pred

                    val_outputs = post_pred(val_outputs[0, ...])
                    val_outputs = val_outputs[None, ...]
                    val_labels = post_label(val_labels[0, ...])
                    val_labels = val_labels[None, ...]

                    value = compute_meandice(y_pred=val_outputs, y=val_labels, include_background=False)

                    print(_index + 1, "/", len(val_loader), value)

                    metric_count += len(value)
                    metric_sum += value.sum().item()
                    metric_vals = value.cpu().numpy()
                    if len(metric_mat) == 0:
                        metric_mat = metric_vals
                    else:
                        metric_mat = np.concatenate((metric_mat, metric_vals), axis=0)

                    for _c in range(output_classes - 1):
                        val0 = torch.nan_to_num(value[0, _c], nan=0.0)
                        val1 = 1.0 - torch.isnan(value[0, 0]).float()
                        metric[2 * _c] += val0 * val1
                        metric[2 * _c + 1] += val1

                    _index += 1

                # synchronizes all processes and reduce results
                if torch.cuda.device_count() > 1:
                    dist.barrier()
                    dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM)

                metric = metric.tolist()
                if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
                    for _c in range(output_classes - 1):
                        print("evaluation metric - class {0:d}:".format(_c + 1), metric[2 * _c] / metric[2 * _c + 1])
                    avg_metric = 0
                    for _c in range(output_classes - 1):
                        avg_metric += metric[2 * _c] / metric[2 * _c + 1]
                    avg_metric = avg_metric / float(output_classes - 1)
                    print("avg_metric", avg_metric)

                    if avg_metric > best_metric:
                        best_metric = avg_metric
                        best_metric_epoch = epoch + 1
                        best_metric_iterations = idx_iter

                    (node_a_d, arch_code_a_d, arch_code_c_d, arch_code_a_max_d) = dints_space.decode()
                    torch.save(
                        {
                            "node_a": node_a_d,
                            "arch_code_a": arch_code_a_d,
                            "arch_code_a_max": arch_code_a_max_d,
                            "arch_code_c": arch_code_c_d,
                            "iter_num": idx_iter,
                            "epochs": epoch + 1,
                            "best_dsc": best_metric,
                            "best_path": best_metric_iterations,
                        },
                        os.path.join(arch_ckpt_path, "search_code_" + str(idx_iter) + ".pt"),
                    )
                    print("saved new best metric model")

                    dict_file = {}
                    dict_file["best_avg_dice_score"] = float(best_metric)
                    dict_file["best_avg_dice_score_epoch"] = int(best_metric_epoch)
                    dict_file["best_avg_dice_score_iteration"] = int(idx_iter)
                    with open(os.path.join(arch_ckpt_path, "progress.yaml"), "w") as out_file:
                        _ = yaml.dump(dict_file, stream=out_file)

                    print(
                        "current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format(
                            epoch + 1, avg_metric, best_metric, best_metric_epoch
                        )
                    )

                    current_time = time.time()
                    elapsed_time = (current_time - start_time) / 60.0
                    with open(os.path.join(arch_ckpt_path, "accuracy_history.csv"), "a") as f:
                        f.write(
                            "{0:d}\t{1:.5f}\t{2:.5f}\t{3:.5f}\t{4:.1f}\t{5:d}\n".format(
                                epoch + 1, avg_metric, loss_torch_epoch, lr, elapsed_time, idx_iter
                            )
                        )

                if torch.cuda.device_count() > 1:
                    dist.barrier()

            torch.cuda.empty_cache()

    print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}")

    if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
        writer.close()

    if torch.cuda.device_count() > 1:
        dist.destroy_process_group()


if __name__ == "__main__":
    from monai.utils import optional_import

    fire, _ = optional_import("fire")
    fire.Fire()