monai
medical
File size: 5,244 Bytes
618f7d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57147d8
618f7d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
---
imports:
  - "$from scipy import ndimage"
arch_ckpt_path: models
amp: true
data_file_base_dir: /workspace/data/msd/Task07_Pancreas
data_list_file_path: configs/dataset_0.json
determ: true
input_channels: 1
learning_rate: 0.025
learning_rate_arch: 0.001
learning_rate_milestones:
- 0.4
- 0.8
num_images_per_batch: 1
num_epochs: 1430
num_epochs_per_validation: 100
num_epochs_warmup: 715
num_patches_per_image: 1
num_sw_batch_size: 6
output_classes: 3
overlap_ratio: 0.625
patch_size:
- 96
- 96
- 96
patch_size_valid:
- 96
- 96
- 96
ram_cost_factor: 0.8
image_key: image
label_key: label
transform_train:
  _target_: Compose
  transforms:
  - _target_: LoadImaged
    keys:
    - "@image_key"
    - "@label_key"
  - _target_: EnsureChannelFirstd
    keys:
    - "@image_key"
    - "@label_key"
  - _target_: Orientationd
    keys:
    - "@image_key"
    - "@label_key"
    axcodes: RAS
  - _target_: Spacingd
    keys:
    - "@image_key"
    - "@label_key"
    pixdim:
    - 1
    - 1
    - 1
    mode:
    - bilinear
    - nearest
    align_corners:
    - true
    - true
  - _target_: CastToTyped
    keys: "@image_key"
    dtype: "$torch.float32"
  - _target_: ScaleIntensityRanged
    keys: "@image_key"
    a_min: -87
    a_max: 199
    b_min: 0
    b_max: 1
    clip: true
  - _target_: CastToTyped
    keys:
    - "@image_key"
    - "@label_key"
    dtype:
    - "$np.float16"
    - "$np.uint8"
  - _target_: CopyItemsd
    keys: "@label_key"
    times: 1
    names:
    - label4crop
  - _target_: Lambdad
    keys: label4crop
    func: "$lambda x, s=@output_classes: np.concatenate(tuple([ndimage.binary_dilation((x==_k).astype(x.dtype), iterations=48).astype(float) for _k in range(s)]), axis=0)"
    overwrite: true
  - _target_: EnsureTyped
    keys:
    - "@image_key"
    - "@label_key"
  - _target_: CastToTyped
    keys: "@image_key"
    dtype: "$torch.float32"
  - _target_: SpatialPadd
    keys:
    - "@image_key"
    - "@label_key"
    - label4crop
    spatial_size: "@patch_size"
    mode:
    - reflect
    - constant
    - constant
  - _target_: RandCropByLabelClassesd
    keys:
    - "@image_key"
    - "@label_key"
    label_key: label4crop
    num_classes: "@output_classes"
    ratios: "$[1,] * @output_classes"
    spatial_size: "@patch_size"
    num_samples: "@num_patches_per_image"
  - _target_: Lambdad
    keys: label4crop
    func: "$lambda x: 0"
  - _target_: RandRotated
    keys:
    - "@image_key"
    - "@label_key"
    range_x: 0.3
    range_y: 0.3
    range_z: 0.3
    mode:
    - bilinear
    - nearest
    prob: 0.2
  - _target_: RandZoomd
    keys:
    - "@image_key"
    - "@label_key"
    min_zoom: 0.8
    max_zoom: 1.2
    mode:
    - trilinear
    - nearest
    align_corners:
    - null
    - null
    prob: 0.16
  - _target_: RandGaussianSmoothd
    keys: "@image_key"
    sigma_x:
    - 0.5
    - 1.15
    sigma_y:
    - 0.5
    - 1.15
    sigma_z:
    - 0.5
    - 1.15
    prob: 0.15
  - _target_: RandScaleIntensityd
    keys: "@image_key"
    factors: 0.3
    prob: 0.5
  - _target_: RandShiftIntensityd
    keys: "@image_key"
    offsets: 0.1
    prob: 0.5
  - _target_: RandGaussianNoised
    keys: "@image_key"
    std: 0.01
    prob: 0.15
  - _target_: RandFlipd
    keys:
    - "@image_key"
    - "@label_key"
    spatial_axis: 0
    prob: 0.5
  - _target_: RandFlipd
    keys:
    - "@image_key"
    - "@label_key"
    spatial_axis: 1
    prob: 0.5
  - _target_: RandFlipd
    keys:
    - "@image_key"
    - "@label_key"
    spatial_axis: 2
    prob: 0.5
  - _target_: CastToTyped
    keys:
    - "@image_key"
    - "@label_key"
    dtype:
    - "$torch.float32"
    - "$torch.uint8"
  - _target_: ToTensord
    keys:
    - "@image_key"
    - "@label_key"
transform_validation:
  _target_: Compose
  transforms:
  - _target_: LoadImaged
    keys:
    - "@image_key"
    - "@label_key"
  - _target_: EnsureChannelFirstd
    keys:
    - "@image_key"
    - "@label_key"
  - _target_: Orientationd
    keys:
    - "@image_key"
    - "@label_key"
    axcodes: RAS
  - _target_: Spacingd
    keys:
    - "@image_key"
    - "@label_key"
    pixdim:
    - 1
    - 1
    - 1
    mode:
    - bilinear
    - nearest
    align_corners:
    - true
    - true
  - _target_: CastToTyped
    keys: "@image_key"
    dtype: "$torch.float32"
  - _target_: ScaleIntensityRanged
    keys: "@image_key"
    a_min: -87
    a_max: 199
    b_min: 0
    b_max: 1
    clip: true
  - _target_: CastToTyped
    keys:
    - "@image_key"
    - "@label_key"
    dtype:
    - "$np.float16"
    - "$np.uint8"
  - _target_: CastToTyped
    keys:
    - "@image_key"
    - "@label_key"
    dtype:
    - "$torch.float32"
    - "$torch.uint8"
  - _target_: ToTensord
    keys:
    - "@image_key"
    - "@label_key"
loss:
  _target_: DiceCELoss
  include_background: false
  to_onehot_y: true
  softmax: true
  squared_pred: true
  batch: true
  smooth_nr: 0.00001
  smooth_dr: 0.00001
dints_space:
  _target_: monai.networks.nets.TopologySearch
  channel_mul: 0.5
  num_blocks: 12
  num_depths: 4
  use_downsample: true
  device: "$torch.device('cuda')"
network:
  _target_: monai.networks.nets.DiNTS
  dints_space: "@dints_space"
  in_channels: "@input_channels"
  num_classes: "@output_classes"
  use_downsample: true