add support for TensorRT conversion and inference
Browse files- README.md +37 -0
- configs/inference_trt.yaml +8 -0
- configs/metadata.json +2 -1
- docs/README.md +37 -0
README.md
CHANGED
@@ -86,6 +86,31 @@ The mean dice score over 3200 epochs (the bright curve is smoothed, and the dark
|
|
86 |
|
87 |
![Validation mean dice score over 3200 epochs (the bright curve is smoothed, and the dark one is the actual curve)](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_net_arch_search_segmentation_validation_4-3.png)
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
### Searched Architecture Visualization
|
90 |
Users can install Graphviz for visualization of searched architectures (needed in [decode_plot.py](https://github.com/Project-MONAI/tutorials/blob/main/automl/DiNTS/decode_plot.py)). The edges between nodes indicate global structure, and numbers next to edges represent different operations in the cell searching space. An example of searched architecture is shown as follows:
|
91 |
|
@@ -144,6 +169,18 @@ python -m monai.bundle run --config_file configs/inference.yaml
|
|
144 |
python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.yaml
|
145 |
```
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
# References
|
148 |
|
149 |
[1] He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850).
|
|
|
86 |
|
87 |
![Validation mean dice score over 3200 epochs (the bright curve is smoothed, and the dark one is the actual curve)](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_net_arch_search_segmentation_validation_4-3.png)
|
88 |
|
89 |
+
#### TensorRT speedup
|
90 |
+
This bundle supports acceleration with TensorRT. The table below displays the speedup ratios observed on an A100 80G GPU.
|
91 |
+
|
92 |
+
| method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
|
93 |
+
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
94 |
+
| model computation | 54611.72 | 19240.66 | 16104.8 | 11443.57 | 2.84 | 3.39 | 4.77 | 1.68 |
|
95 |
+
| end2end | 133.93 | 43.41 | 35.65 | 26.63 | 3.09 | 3.76 | 5.03 | 1.63 |
|
96 |
+
|
97 |
+
Where:
|
98 |
+
- `model computation` means the speedup ratio of model's inference with a random input without preprocessing and postprocessing
|
99 |
+
- `end2end` means run the bundle end-to-end with the TensorRT based model.
|
100 |
+
- `torch_fp32` and `torch_amp` are for the PyTorch models with or without `amp` mode.
|
101 |
+
- `trt_fp32` and `trt_fp16` are for the TensorRT based models converted in corresponding precision.
|
102 |
+
- `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
|
103 |
+
- `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
|
104 |
+
|
105 |
+
This result is benchmarked under:
|
106 |
+
- TensorRT: 8.6.1+cuda12.0
|
107 |
+
- Torch-TensorRT Version: 1.4.0
|
108 |
+
- CPU Architecture: x86-64
|
109 |
+
- OS: ubuntu 20.04
|
110 |
+
- Python version:3.8.10
|
111 |
+
- CUDA version: 12.1
|
112 |
+
- GPU models and configuration: A100 80G
|
113 |
+
|
114 |
### Searched Architecture Visualization
|
115 |
Users can install Graphviz for visualization of searched architectures (needed in [decode_plot.py](https://github.com/Project-MONAI/tutorials/blob/main/automl/DiNTS/decode_plot.py)). The edges between nodes indicate global structure, and numbers next to edges represent different operations in the cell searching space. An example of searched architecture is shown as follows:
|
116 |
|
|
|
169 |
python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.yaml
|
170 |
```
|
171 |
|
172 |
+
#### Export checkpoint to TensorRT based models with fp32 or fp16 precision:
|
173 |
+
|
174 |
+
```
|
175 |
+
python -m monai.bundle trt_export --net_id network_def --filepath models/model_trt.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.yaml --precision <fp32/fp16> --use_trace "True" --dynamic_batchsize "[1, 4, 8]" --converter_kwargs "{'truncate_long_and_double':True, 'torch_executed_ops': ['aten::upsample_trilinear3d']}"
|
176 |
+
```
|
177 |
+
|
178 |
+
#### Execute inference with the TensorRT model:
|
179 |
+
|
180 |
+
```
|
181 |
+
python -m monai.bundle run --config_file "['configs/inference.yaml', 'configs/inference_trt.yaml']"
|
182 |
+
```
|
183 |
+
|
184 |
# References
|
185 |
|
186 |
[1] He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850).
|
configs/inference_trt.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
imports:
|
3 |
+
- "$import glob"
|
4 |
+
- "$import os"
|
5 |
+
- "$import torch_tensorrt"
|
6 |
+
handlers#0#_disabled_: true
|
7 |
+
network_def: "$torch.jit.load(@bundle_root + '/models/model_trt.ts')"
|
8 |
+
evaluator#amp: false
|
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.4.
|
4 |
"changelog": {
|
|
|
5 |
"0.4.2": "update search function to match monai 1.2",
|
6 |
"0.4.1": "fix the wrong GPU index issue of multi-node",
|
7 |
"0.4.0": "remove error dollar symbol in readme",
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.4.3",
|
4 |
"changelog": {
|
5 |
+
"0.4.3": "add support for TensorRT conversion and inference",
|
6 |
"0.4.2": "update search function to match monai 1.2",
|
7 |
"0.4.1": "fix the wrong GPU index issue of multi-node",
|
8 |
"0.4.0": "remove error dollar symbol in readme",
|
docs/README.md
CHANGED
@@ -79,6 +79,31 @@ The mean dice score over 3200 epochs (the bright curve is smoothed, and the dark
|
|
79 |
|
80 |
![Validation mean dice score over 3200 epochs (the bright curve is smoothed, and the dark one is the actual curve)](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_net_arch_search_segmentation_validation_4-3.png)
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
### Searched Architecture Visualization
|
83 |
Users can install Graphviz for visualization of searched architectures (needed in [decode_plot.py](https://github.com/Project-MONAI/tutorials/blob/main/automl/DiNTS/decode_plot.py)). The edges between nodes indicate global structure, and numbers next to edges represent different operations in the cell searching space. An example of searched architecture is shown as follows:
|
84 |
|
@@ -137,6 +162,18 @@ python -m monai.bundle run --config_file configs/inference.yaml
|
|
137 |
python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.yaml
|
138 |
```
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
# References
|
141 |
|
142 |
[1] He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850).
|
|
|
79 |
|
80 |
![Validation mean dice score over 3200 epochs (the bright curve is smoothed, and the dark one is the actual curve)](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_net_arch_search_segmentation_validation_4-3.png)
|
81 |
|
82 |
+
#### TensorRT speedup
|
83 |
+
This bundle supports acceleration with TensorRT. The table below displays the speedup ratios observed on an A100 80G GPU.
|
84 |
+
|
85 |
+
| method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
|
86 |
+
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
87 |
+
| model computation | 54611.72 | 19240.66 | 16104.8 | 11443.57 | 2.84 | 3.39 | 4.77 | 1.68 |
|
88 |
+
| end2end | 133.93 | 43.41 | 35.65 | 26.63 | 3.09 | 3.76 | 5.03 | 1.63 |
|
89 |
+
|
90 |
+
Where:
|
91 |
+
- `model computation` means the speedup ratio of model's inference with a random input without preprocessing and postprocessing
|
92 |
+
- `end2end` means run the bundle end-to-end with the TensorRT based model.
|
93 |
+
- `torch_fp32` and `torch_amp` are for the PyTorch models with or without `amp` mode.
|
94 |
+
- `trt_fp32` and `trt_fp16` are for the TensorRT based models converted in corresponding precision.
|
95 |
+
- `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
|
96 |
+
- `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
|
97 |
+
|
98 |
+
This result is benchmarked under:
|
99 |
+
- TensorRT: 8.6.1+cuda12.0
|
100 |
+
- Torch-TensorRT Version: 1.4.0
|
101 |
+
- CPU Architecture: x86-64
|
102 |
+
- OS: ubuntu 20.04
|
103 |
+
- Python version:3.8.10
|
104 |
+
- CUDA version: 12.1
|
105 |
+
- GPU models and configuration: A100 80G
|
106 |
+
|
107 |
### Searched Architecture Visualization
|
108 |
Users can install Graphviz for visualization of searched architectures (needed in [decode_plot.py](https://github.com/Project-MONAI/tutorials/blob/main/automl/DiNTS/decode_plot.py)). The edges between nodes indicate global structure, and numbers next to edges represent different operations in the cell searching space. An example of searched architecture is shown as follows:
|
109 |
|
|
|
162 |
python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.yaml
|
163 |
```
|
164 |
|
165 |
+
#### Export checkpoint to TensorRT based models with fp32 or fp16 precision:
|
166 |
+
|
167 |
+
```
|
168 |
+
python -m monai.bundle trt_export --net_id network_def --filepath models/model_trt.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.yaml --precision <fp32/fp16> --use_trace "True" --dynamic_batchsize "[1, 4, 8]" --converter_kwargs "{'truncate_long_and_double':True, 'torch_executed_ops': ['aten::upsample_trilinear3d']}"
|
169 |
+
```
|
170 |
+
|
171 |
+
#### Execute inference with the TensorRT model:
|
172 |
+
|
173 |
+
```
|
174 |
+
python -m monai.bundle run --config_file "['configs/inference.yaml', 'configs/inference_trt.yaml']"
|
175 |
+
```
|
176 |
+
|
177 |
# References
|
178 |
|
179 |
[1] He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850).
|