monai
medical
katielink commited on
Commit
cf880b5
·
1 Parent(s): 8ecd5bf

update learning rate and readme

Browse files
README.md CHANGED
@@ -11,6 +11,11 @@ A neural architecture search algorithm for volumetric (3D) segmentation of the p
11
  # Model Overview
12
  This model is trained using the state-of-the-art algorithm [1] of the "Medical Segmentation Decathlon Challenge 2018" with 196 training images, 56 validation images, and 28 testing images.
13
 
 
 
 
 
 
14
  ## Data
15
  The training dataset is Task07_Pancreas.tar from http://medicaldecathlon.com/. And the data list/split can be created with the script `scripts/prepare_datalist.py`.
16
 
@@ -19,17 +24,66 @@ The training was performed with at least 16GB-memory GPUs.
19
 
20
  Actual Model Input: 96 x 96 x 96
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  ## Input and output formats
23
  Input: 1 channel CT image
24
 
25
  Output: 3 channels: Label 2: pancreatic tumor; Label 1: pancreas; Label 0: everything else
26
 
27
- ## Scores
28
  This model achieves the following Dice score on the validation data (our own split from the training dataset):
29
 
30
- Mean Dice = 0.72
 
 
 
 
 
 
 
 
31
 
32
- ## commands example
 
 
 
33
  Create data split (.json file):
34
 
35
  ```
@@ -72,6 +126,12 @@ Execute inference:
72
  python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.yaml --logging_file configs/logging.conf
73
  ```
74
 
 
 
 
 
 
 
75
  # Disclaimer
76
  This is an example, not to be used for diagnostic purposes.
77
 
 
11
  # Model Overview
12
  This model is trained using the state-of-the-art algorithm [1] of the "Medical Segmentation Decathlon Challenge 2018" with 196 training images, 56 validation images, and 28 testing images.
13
 
14
+ This model is trained using the neural network model from the neural architecture search algorithm, DiNTS [1].
15
+
16
+ ![image](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_net_arch_search_segmentation_workflow_4-1.png
17
+ )
18
+
19
  ## Data
20
  The training dataset is Task07_Pancreas.tar from http://medicaldecathlon.com/. And the data list/split can be created with the script `scripts/prepare_datalist.py`.
21
 
 
24
 
25
  Actual Model Input: 96 x 96 x 96
26
 
27
+ ### Neural Architecture Search Configuration
28
+ The neural architecture search was performed with the following:
29
+
30
+ - AMP: True
31
+ - Optimizer: SGD
32
+ - Initial Learning Rate: 0.025
33
+ - Loss: DiceCELoss
34
+
35
+ ### Training Configuration
36
+ The training was performed with the following:
37
+
38
+ - AMP: True
39
+ - Optimizer: SGD
40
+ - (Initial) Learning Rate: 0.025
41
+ - Loss: DiceCELoss
42
+ - Note: If out-of-memory or program crash occurs while caching the data set, please change the cache\_rate in CacheDataset to a lower value in the range (0, 1).
43
+
44
+ The segmentation of pancreas region is formulated as the voxel-wise 3-class classification. Each voxel is predicted as either foreground (pancreas body, tumour) or background. And the model is optimized with gradient descent method minimizing soft dice loss and cross-entropy loss between the predicted mask and ground truth segmentation.
45
+
46
+ ### Data Pre-processing and Augmentation
47
+
48
+ Input: 1 channel CT image with intensity in HU
49
+
50
+ - Converting to channel first
51
+ - Normalizing and clipping intensities of tissue window to [0,1]
52
+ - Cropping foreground surrounding regions
53
+ - Cropping random fixed sized regions of size [96, 96, 96] with the center being a foreground or background voxel at ratio 1 : 1
54
+ - Randomly rotating volumes
55
+ - Randomly zooming volumes
56
+ - Randomly smoothing volumes with Gaussian kernels
57
+ - Randomly scaling intensity of the volume
58
+ - Randomly shifting intensity of the volume
59
+ - Randomly adding Gaussian noises
60
+ - Randomly flipping volumes
61
+
62
+ ### Sliding-window Inference
63
+ Inference is performed in a sliding window manner with a specified stride.
64
+
65
  ## Input and output formats
66
  Input: 1 channel CT image
67
 
68
  Output: 3 channels: Label 2: pancreatic tumor; Label 1: pancreas; Label 0: everything else
69
 
70
+ ## Performance
71
  This model achieves the following Dice score on the validation data (our own split from the training dataset):
72
 
73
+ Mean Dice = 0.62
74
+
75
+ Training loss over 3200 epochs (the bright curve is smoothed, and the dark one is the actual curve)
76
+
77
+ ![image](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_net_arch_search_segmentation_train_4-2.png)
78
+
79
+ Validation mean dice score over 3200 epochs (the bright curve is smoothed, and the dark one is the actual curve)
80
+
81
+ ![image](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_net_arch_search_segmentation_validation_4-2.png)
82
 
83
+ ### Searched Architecture Visualization
84
+ Users can install Graphviz for visualization of searched architectures (needed in custom/decode_plot.py). The edges between nodes indicate global structure, and numbers next to edges represent different operations in the cell searching space. An example of searched architecture is shown as follows:
85
+
86
+ ## Commands Example
87
  Create data split (.json file):
88
 
89
  ```
 
126
  python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.yaml --logging_file configs/logging.conf
127
  ```
128
 
129
+ Export checkpoint for TorchScript
130
+
131
+ ```
132
+ python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.yaml
133
+ ```
134
+
135
  # Disclaimer
136
  This is an example, not to be used for diagnostic purposes.
137
 
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
- "version": "0.3.2",
4
  "changelog": {
 
5
  "0.3.2": "update to use monai 1.0.1",
6
  "0.3.1": "fix license Copyright error",
7
  "0.3.0": "update license files",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.3.3",
4
  "changelog": {
5
+ "0.3.3": "update learning rate and readme",
6
  "0.3.2": "update to use monai 1.0.1",
7
  "0.3.1": "fix license Copyright error",
8
  "0.3.0": "update license files",
configs/multi_gpu_train.yaml CHANGED
@@ -6,7 +6,7 @@ network:
6
  find_unused_parameters: true
7
  device_ids:
8
  - "@device"
9
- optimizer#lr: "$0.0125*dist.get_world_size()"
10
  lr_scheduler#step_size: "$80*dist.get_world_size()"
11
  train#handlers:
12
  - _target_: LrScheduleHandler
 
6
  find_unused_parameters: true
7
  device_ids:
8
  - "@device"
9
+ optimizer#lr: "$0.025*dist.get_world_size()"
10
  lr_scheduler#step_size: "$80*dist.get_world_size()"
11
  train#handlers:
12
  - _target_: LrScheduleHandler
docs/README.md CHANGED
@@ -4,6 +4,11 @@ A neural architecture search algorithm for volumetric (3D) segmentation of the p
4
  # Model Overview
5
  This model is trained using the state-of-the-art algorithm [1] of the "Medical Segmentation Decathlon Challenge 2018" with 196 training images, 56 validation images, and 28 testing images.
6
 
 
 
 
 
 
7
  ## Data
8
  The training dataset is Task07_Pancreas.tar from http://medicaldecathlon.com/. And the data list/split can be created with the script `scripts/prepare_datalist.py`.
9
 
@@ -12,17 +17,66 @@ The training was performed with at least 16GB-memory GPUs.
12
 
13
  Actual Model Input: 96 x 96 x 96
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ## Input and output formats
16
  Input: 1 channel CT image
17
 
18
  Output: 3 channels: Label 2: pancreatic tumor; Label 1: pancreas; Label 0: everything else
19
 
20
- ## Scores
21
  This model achieves the following Dice score on the validation data (our own split from the training dataset):
22
 
23
- Mean Dice = 0.72
 
 
 
 
 
 
 
 
24
 
25
- ## commands example
 
 
 
26
  Create data split (.json file):
27
 
28
  ```
@@ -65,6 +119,12 @@ Execute inference:
65
  python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.yaml --logging_file configs/logging.conf
66
  ```
67
 
 
 
 
 
 
 
68
  # Disclaimer
69
  This is an example, not to be used for diagnostic purposes.
70
 
 
4
  # Model Overview
5
  This model is trained using the state-of-the-art algorithm [1] of the "Medical Segmentation Decathlon Challenge 2018" with 196 training images, 56 validation images, and 28 testing images.
6
 
7
+ This model is trained using the neural network model from the neural architecture search algorithm, DiNTS [1].
8
+
9
+ ![image](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_net_arch_search_segmentation_workflow_4-1.png
10
+ )
11
+
12
  ## Data
13
  The training dataset is Task07_Pancreas.tar from http://medicaldecathlon.com/. And the data list/split can be created with the script `scripts/prepare_datalist.py`.
14
 
 
17
 
18
  Actual Model Input: 96 x 96 x 96
19
 
20
+ ### Neural Architecture Search Configuration
21
+ The neural architecture search was performed with the following:
22
+
23
+ - AMP: True
24
+ - Optimizer: SGD
25
+ - Initial Learning Rate: 0.025
26
+ - Loss: DiceCELoss
27
+
28
+ ### Training Configuration
29
+ The training was performed with the following:
30
+
31
+ - AMP: True
32
+ - Optimizer: SGD
33
+ - (Initial) Learning Rate: 0.025
34
+ - Loss: DiceCELoss
35
+ - Note: If out-of-memory or program crash occurs while caching the data set, please change the cache\_rate in CacheDataset to a lower value in the range (0, 1).
36
+
37
+ The segmentation of pancreas region is formulated as the voxel-wise 3-class classification. Each voxel is predicted as either foreground (pancreas body, tumour) or background. And the model is optimized with gradient descent method minimizing soft dice loss and cross-entropy loss between the predicted mask and ground truth segmentation.
38
+
39
+ ### Data Pre-processing and Augmentation
40
+
41
+ Input: 1 channel CT image with intensity in HU
42
+
43
+ - Converting to channel first
44
+ - Normalizing and clipping intensities of tissue window to [0,1]
45
+ - Cropping foreground surrounding regions
46
+ - Cropping random fixed sized regions of size [96, 96, 96] with the center being a foreground or background voxel at ratio 1 : 1
47
+ - Randomly rotating volumes
48
+ - Randomly zooming volumes
49
+ - Randomly smoothing volumes with Gaussian kernels
50
+ - Randomly scaling intensity of the volume
51
+ - Randomly shifting intensity of the volume
52
+ - Randomly adding Gaussian noises
53
+ - Randomly flipping volumes
54
+
55
+ ### Sliding-window Inference
56
+ Inference is performed in a sliding window manner with a specified stride.
57
+
58
  ## Input and output formats
59
  Input: 1 channel CT image
60
 
61
  Output: 3 channels: Label 2: pancreatic tumor; Label 1: pancreas; Label 0: everything else
62
 
63
+ ## Performance
64
  This model achieves the following Dice score on the validation data (our own split from the training dataset):
65
 
66
+ Mean Dice = 0.62
67
+
68
+ Training loss over 3200 epochs (the bright curve is smoothed, and the dark one is the actual curve)
69
+
70
+ ![image](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_net_arch_search_segmentation_train_4-2.png)
71
+
72
+ Validation mean dice score over 3200 epochs (the bright curve is smoothed, and the dark one is the actual curve)
73
+
74
+ ![image](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_net_arch_search_segmentation_validation_4-2.png)
75
 
76
+ ### Searched Architecture Visualization
77
+ Users can install Graphviz for visualization of searched architectures (needed in custom/decode_plot.py). The edges between nodes indicate global structure, and numbers next to edges represent different operations in the cell searching space. An example of searched architecture is shown as follows:
78
+
79
+ ## Commands Example
80
  Create data split (.json file):
81
 
82
  ```
 
119
  python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.yaml --logging_file configs/logging.conf
120
  ```
121
 
122
+ Export checkpoint for TorchScript
123
+
124
+ ```
125
+ python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.yaml
126
+ ```
127
+
128
  # Disclaimer
129
  This is an example, not to be used for diagnostic purposes.
130
 
models/model.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:975201057eb16225a1abfd047cb9b293f6d481dc604468d512710f3543f29066
3
- size 616210421
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4de79b954bb197c9a75d198c7b1038ad504cf0e370ae8b055c49c134c7b0e883
3
+ size 534788757
models/model.ts CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:526d2bdb4d88f6f55f2d88eb0c79deeeb90b3ced182269e33cdc5da6e46ea5fb
3
- size 616338455
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9c47d9b4d1ec457dfa28c9e03c4ab847cdbe6ca825e3a84a245ca8a9caa631f
3
+ size 534978281
models/search_code_18590.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:01e361e9843e2f4e5ff1599da0abac77013ea38cab8fdd6c9286bb6572c9a32d
3
- size 4335
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21a2a05b173e9a5a80a009ce4baa3dfd8118463e7c26a1ef49cce573a3e662cc
3
+ size 4355