{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.3.7", "changelog": { "0.3.7": "re-train model with updated dints implementation", "0.3.6": "black autofix format and add name tag", "0.3.5": "restructure readme to match updated template", "0.3.4": "correct typos", "0.3.3": "update learning rate and readme", "0.3.2": "update to use monai 1.0.1", "0.3.1": "fix license Copyright error", "0.3.0": "update license files", "0.2.0": "unify naming", "0.1.1": "fix data type issue in searching/training configurations", "0.1.0": "complete the model package", "0.0.1": "initialize the model package structure" }, "monai_version": "1.2.0rc4", "pytorch_version": "1.13.1", "numpy_version": "1.22.2", "optional_packages_version": { "fire": "0.4.0", "nibabel": "4.0.1", "pytorch-ignite": "0.4.9" }, "name": "Pancreas CT DiNTS segmentation", "task": "Neural architecture search on pancreas CT segmentation", "description": "Searched architectures for volumetric (3D) segmentation of the pancreas from CT image", "authors": "MONAI team", "copyright": "Copyright (c) MONAI Consortium", "data_source": "Task07_Pancreas.tar from http://medicaldecathlon.com/", "data_type": "nibabel", "image_classes": "single channel data, intensity scaled to [0, 1]", "label_classes": "single channel data, 1 is pancreas, 2 is pancreatic tumor, 0 is everything else", "pred_classes": "3 channels OneHot data, channel 1 is pancreas, channel 2 is pancreatic tumor, channel 0 is background", "eval_metrics": { "mean_dice": 0.62 }, "intended_use": "This is an example, not to be used for diagnostic purposes", "references": [ "He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850)." ], "network_data_format": { "inputs": { "image": { "type": "image", "format": "hounsfield", "modality": "CT", "num_channels": 1, "spatial_shape": [ 96, 96, 96 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": true, "channel_def": { "0": "image" } } }, "outputs": { "pred": { "type": "image", "format": "segmentation", "num_channels": 3, "spatial_shape": [ 96, 96, 96 ], "dtype": "float32", "value_range": [ 0, 1, 2 ], "is_patch_data": true, "channel_def": { "0": "background", "1": "pancreas", "2": "pancreatic tumor" } } } } }