--- imports: - "$from scipy import ndimage" arch_ckpt_path: models amp: true data_file_base_dir: /workspace/data/msd/Task07_Pancreas data_list_file_path: configs/dataset_0.json determ: true input_channels: 1 learning_rate: 0.025 learning_rate_arch: 0.001 learning_rate_milestones: - 0.4 - 0.8 num_images_per_batch: 1 num_epochs: 1430 num_epochs_per_validation: 100 num_epochs_warmup: 715 num_patches_per_image: 1 num_sw_batch_size: 6 output_classes: 3 overlap_ratio: 0.625 patch_size: - 96 - 96 - 96 patch_size_valid: - 96 - 96 - 96 ram_cost_factor: 0.8 image_key: image label_key: label transform_train: _target_: Compose transforms: - _target_: LoadImaged keys: - "@image_key" - "@label_key" - _target_: EnsureChannelFirstd keys: - "@image_key" - "@label_key" - _target_: Orientationd keys: - "@image_key" - "@label_key" axcodes: RAS - _target_: Spacingd keys: - "@image_key" - "@label_key" pixdim: - 1 - 1 - 1 mode: - bilinear - nearest align_corners: - true - true - _target_: CastToTyped keys: "@image_key" dtype: "$torch.float32" - _target_: ScaleIntensityRanged keys: "@image_key" a_min: -87 a_max: 199 b_min: 0 b_max: 1 clip: true - _target_: CastToTyped keys: - "@image_key" - "@label_key" dtype: - "$np.float16" - "$np.uint8" - _target_: CopyItemsd keys: "@label_key" times: 1 names: - label4crop - _target_: Lambdad keys: label4crop func: "$lambda x, s=@output_classes: np.concatenate(tuple([ndimage.binary_dilation((x==_k).astype(x.dtype), iterations=48).astype(float) for _k in range(s)]), axis=0)" overwrite: true - _target_: EnsureTyped keys: - "@image_key" - "@label_key" - _target_: CastToTyped keys: "@image_key" dtype: "$torch.float32" - _target_: SpatialPadd keys: - "@image_key" - "@label_key" - label4crop spatial_size: "@patch_size" mode: - reflect - constant - constant - _target_: RandCropByLabelClassesd keys: - "@image_key" - "@label_key" label_key: label4crop num_classes: "@output_classes" ratios: "$[1,] * @output_classes" spatial_size: "@patch_size" num_samples: "@num_patches_per_image" - _target_: Lambdad keys: label4crop func: "$lambda x: 0" - _target_: RandRotated keys: - "@image_key" - "@label_key" range_x: 0.3 range_y: 0.3 range_z: 0.3 mode: - bilinear - nearest prob: 0.2 - _target_: RandZoomd keys: - "@image_key" - "@label_key" min_zoom: 0.8 max_zoom: 1.2 mode: - trilinear - nearest align_corners: - null - null prob: 0.16 - _target_: RandGaussianSmoothd keys: "@image_key" sigma_x: - 0.5 - 1.15 sigma_y: - 0.5 - 1.15 sigma_z: - 0.5 - 1.15 prob: 0.15 - _target_: RandScaleIntensityd keys: "@image_key" factors: 0.3 prob: 0.5 - _target_: RandShiftIntensityd keys: "@image_key" offsets: 0.1 prob: 0.5 - _target_: RandGaussianNoised keys: "@image_key" std: 0.01 prob: 0.15 - _target_: RandFlipd keys: - "@image_key" - "@label_key" spatial_axis: 0 prob: 0.5 - _target_: RandFlipd keys: - "@image_key" - "@label_key" spatial_axis: 1 prob: 0.5 - _target_: RandFlipd keys: - "@image_key" - "@label_key" spatial_axis: 2 prob: 0.5 - _target_: CastToTyped keys: - "@image_key" - "@label_key" dtype: - "$torch.float32" - "$torch.uint8" - _target_: ToTensord keys: - "@image_key" - "@label_key" transform_validation: _target_: Compose transforms: - _target_: LoadImaged keys: - "@image_key" - "@label_key" - _target_: EnsureChannelFirstd keys: - "@image_key" - "@label_key" - _target_: Orientationd keys: - "@image_key" - "@label_key" axcodes: RAS - _target_: Spacingd keys: - "@image_key" - "@label_key" pixdim: - 1 - 1 - 1 mode: - bilinear - nearest align_corners: - true - true - _target_: CastToTyped keys: "@image_key" dtype: "$torch.float32" - _target_: ScaleIntensityRanged keys: "@image_key" a_min: -87 a_max: 199 b_min: 0 b_max: 1 clip: true - _target_: CastToTyped keys: - "@image_key" - "@label_key" dtype: - "$np.float16" - "$np.uint8" - _target_: CastToTyped keys: - "@image_key" - "@label_key" dtype: - "$torch.float32" - "$torch.uint8" - _target_: ToTensord keys: - "@image_key" - "@label_key" loss: _target_: DiceCELoss include_background: false to_onehot_y: true softmax: true squared_pred: true batch: true smooth_nr: 0.00001 smooth_dr: 0.00001 dints_space: _target_: monai.networks.nets.TopologySearch channel_mul: 0.5 num_blocks: 12 num_depths: 4 use_downsample: true device: "$torch.device('cuda')" network: _target_: monai.networks.nets.DiNTS dints_space: "@dints_space" in_channels: "@input_channels" num_classes: "@output_classes" use_downsample: true