{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.0.1", "changelog": { "0.0.1": "initialize the model package structure" }, "monai_version": "1.0.1", "pytorch_version": "1.13.0", "numpy_version": "1.21.2", "optional_packages_version": { "nibabel": "4.0.1", "pytorch-ignite": "0.4.9" }, "task": "Pathology Nuclick segmentation", "description": "A pre-trained model for Nuclei Classification within Haematoxylin & Eosin stained histology images", "authors": "MONAI team", "copyright": "Copyright (c) MONAI Consortium", "data_source": "consep_dataset.zip from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet", "data_type": "png", "image_classes": "RGB channel data, intensity scaled to [0, 1]", "label_classes": "single channel data", "pred_classes": "1 channel data, with value 1 as nuclei and 0 as background", "eval_metrics": { "mean_dice": 0.85 }, "intended_use": "This is an example, not to be used for diagnostic purposes", "references": [ "Koohbanani, Navid Alemi, et al. \"NuClick: A Deep Learning Framework for Interactive Segmentation of Microscopy Images.\" https://arxiv.org/abs/2005.14511", "S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y-W. Tsang, J. T. Kwak and N. Rajpoot. \"HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.\" Medical Image Analysis, Sept. 2019. https://doi.org/10.1016/j.media.2019.101563", "NuClick PyTorch Implementation, https://github.com/mostafajahanifar/nuclick_torch" ], "network_data_format": { "inputs": { "image": { "type": "png", "format": "RGB", "modality": "regular", "num_channels": 5, "spatial_shape": [ 128, 128 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": false, "channel_def": { "0": "R", "1": "G", "2": "B", "3": "+ve Signal", "4": "-ve Signal" } } }, "outputs": { "pred": { "type": "image", "format": "segmentation", "num_channels": 1, "spatial_shape": [ 128, 128 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": false, "channel_def": { "0": "Nuclei" } } } } }