{ "imports": [ "$import glob", "$import json", "$import pathlib", "$import os" ], "bundle_root": "/workspace/data/pathology_nuclick_annotation", "output_dir": "$@bundle_root + '/eval'", "dataset_dir": "/workspace/data/CoNSePNuclei", "images": "$list(sorted(glob.glob(@dataset_dir + '/Test/Images/*.png')))[:1]", "centroids": "$list(sorted(glob.glob(@dataset_dir + '/Test/Centroids/*.txt')))[:1]", "input_data": "$[{'image': i, 'foreground': json.loads(pathlib.Path(c).read_text())} for i,c in zip(@images, @centroids)]", "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')", "network_def": { "_target_": "BasicUNet", "spatial_dims": 2, "in_channels": 5, "out_channels": 1, "features": [ 32, 64, 128, 256, 512, 32 ] }, "network": "$@network_def.to(@device)", "preprocessing": { "_target_": "Compose", "transforms": [ { "_target_": "LoadImaged", "keys": "image", "dtype": "uint8" }, { "_target_": "EnsureChannelFirstd", "keys": "image" }, { "_target_": "ScaleIntensityRanged", "keys": "image", "a_min": 0.0, "a_max": 255.0, "b_min": -1.0, "b_max": 1.0 }, { "_target_": "AddClickSignalsd", "image": "image", "foreground": "foreground", "gaussian": false }, { "_target_": "SqueezeDimd", "keys": "image" } ] }, "dataset": { "_target_": "Dataset", "data": "@input_data", "transform": "@preprocessing" }, "dataloader": { "_target_": "DataLoader", "dataset": "@dataset", "batch_size": 1, "shuffle": false, "num_workers": 4 }, "inferer": { "_target_": "SimpleInferer" }, "postprocessing": { "_target_": "Compose", "transforms": [ { "_target_": "Activationsd", "keys": "pred", "sigmoid": true }, { "_target_": "AsDiscreted", "keys": "pred", "threshold": 0.5 }, { "_target_": "KeepLargestConnectedComponentd", "keys": "pred" }, { "_target_": "SaveImaged", "keys": "pred", "meta_keys": "pred_meta_dict", "output_dir": "@output_dir", "output_ext": ".png" } ] }, "handlers": [ { "_target_": "CheckpointLoader", "load_path": "$@bundle_root + '/models/model.pt'", "load_dict": { "model": "@network" } }, { "_target_": "StatsHandler", "iteration_log": false } ], "evaluator": { "_target_": "SupervisedEvaluator", "device": "@device", "val_data_loader": "@dataloader", "network": "@network", "inferer": "@inferer", "postprocessing": "@postprocessing", "val_handlers": "@handlers", "amp": true }, "evaluating": [ "$setattr(torch.backends.cudnn, 'benchmark', True)", "$@evaluator.run()" ] }