#!/usr/bin/env python3 # ========================================================================= # Adapted from https://github.com/google-research/nested-transformer. # which has the following license... # https://github.com/pytorch/vision/blob/main/LICENSE # # BSD 3-Clause License # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Nested Transformer (NesT) in PyTorch A PyTorch implement of Aggregating Nested Transformers as described in: 'Aggregating Nested Transformers' - https://arxiv.org/abs/2105.12723 The official Jax code is released and available at https://github.com/google-research/nested-transformer. The weights have been converted with convert/convert_nest_flax.py Acknowledgments: * The paper authors for sharing their research, code, and model weights * Ross Wightman's existing code off which I based this Copyright 2021 Alexander Soare """ import collections.abc import logging import math from functools import partial from typing import Callable, Sequence import torch import torch.nn.functional as F from torch import nn from .nest import DropPath, Mlp, _assert, create_conv3d, create_pool3d, to_ntuple, trunc_normal_ from .patchEmbed3D import PatchEmbed3D _logger = logging.getLogger(__name__) class Attention(nn.Module): """ This is much like `.vision_transformer.Attention` but uses *localised* self attention by accepting an input with an extra "image block" dim """ def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): """ x is shape: B (batch_size), T (image blocks), N (seq length per image block), C (embed dim) """ b, t, n, c = x.shape # result of next line is (qkv, B, num (H)eads, T, N, (C')hannels per head) qkv = self.qkv(x).reshape(b, t, n, 3, self.num_heads, c // self.num_heads).permute(3, 0, 4, 1, 2, 5) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale # (B, H, T, N, N) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).permute(0, 2, 3, 4, 1).reshape(b, t, n, c) x = self.proj(x) x = self.proj_drop(x) return x # (B, T, N, C) class TransformerLayer(nn.Module): """ This is much like `.vision_transformer.Block` but: - Called TransformerLayer here to allow for "block" as defined in the paper ("non-overlapping image blocks") - Uses modified Attention layer that handles the "block" dimension """ def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): y = self.norm1(x) x = x + self.drop_path(self.attn(y)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class ConvPool(nn.Module): def __init__(self, in_channels, out_channels, norm_layer, pad_type=""): super().__init__() self.conv = create_conv3d(in_channels, out_channels, kernel_size=3, padding=pad_type, bias=True) self.norm = norm_layer(out_channels) self.pool = create_pool3d("max", kernel_size=3, stride=2, padding=pad_type) def forward(self, x): """ x is expected to have shape (B, C, D, H, W) """ _assert(x.shape[-3] % 2 == 0, "BlockAggregation requires even input spatial dims") _assert(x.shape[-2] % 2 == 0, "BlockAggregation requires even input spatial dims") _assert(x.shape[-1] % 2 == 0, "BlockAggregation requires even input spatial dims") # print('In ConvPool x : {}'.format(x.shape)) x = self.conv(x) # Layer norm done over channel dim only x = self.norm(x.permute(0, 2, 3, 4, 1)).permute(0, 4, 1, 2, 3) x = self.pool(x) return x # (B, C, D//2, H//2, W//2) def blockify(x, block_size: int): """image to blocks Args: x (Tensor): with shape (B, D, H, W, C) block_size (int): edge length of a single square block in units of D, H, W """ b, d, h, w, c = x.shape _assert(d % block_size == 0, "`block_size` must divide input depth evenly") _assert(h % block_size == 0, "`block_size` must divide input height evenly") _assert(w % block_size == 0, "`block_size` must divide input width evenly") grid_depth = d // block_size grid_height = h // block_size grid_width = w // block_size x = x.reshape(b, grid_depth, block_size, grid_height, block_size, grid_width, block_size, c) x = x.permute(0, 1, 3, 5, 2, 4, 6, 7).reshape( b, grid_depth * grid_height * grid_width, -1, c ) # shape [2, 512, 27, 128] return x # (B, T, N, C) # @register_notrace_function # reason: int receives Proxy def deblockify(x, block_size: int): """blocks to image Args: x (Tensor): with shape (B, T, N, C) where T is number of blocks and N is sequence size per block block_size (int): edge length of a single square block in units of desired D, H, W """ b, t, _, c = x.shape grid_size = round(math.pow(t, 1 / 3)) depth = height = width = grid_size * block_size x = x.reshape(b, grid_size, grid_size, grid_size, block_size, block_size, block_size, c) x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).reshape(b, depth, height, width, c) return x # (B, D, H, W, C) class NestLevel(nn.Module): """Single hierarchical level of a Nested Transformer""" def __init__( self, num_blocks, block_size, seq_length, num_heads, depth, embed_dim, prev_embed_dim=None, mlp_ratio=4.0, qkv_bias=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rates: Sequence[int] = (), norm_layer=None, act_layer=None, pad_type="", ): super().__init__() self.block_size = block_size self.pos_embed = nn.Parameter(torch.zeros(1, num_blocks, seq_length, embed_dim)) if prev_embed_dim is not None: self.pool = ConvPool(prev_embed_dim, embed_dim, norm_layer=norm_layer, pad_type=pad_type) else: self.pool = nn.Identity() # Transformer encoder if len(drop_path_rates): assert len(drop_path_rates) == depth, "Must provide as many drop path rates as there are transformer layers" self.transformer_encoder = nn.Sequential( *[ TransformerLayer( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rates[i], norm_layer=norm_layer, act_layer=act_layer, ) for i in range(depth) ] ) def forward(self, x): """ expects x as (B, C, D, H, W) """ x = self.pool(x) x = x.permute(0, 2, 3, 4, 1) # (B, H', W', C), switch to channels last for transformer x = blockify(x, self.block_size) # (B, T, N, C') x = x + self.pos_embed x = self.transformer_encoder(x) # (B, ,T, N, C') x = deblockify(x, self.block_size) # (B, D', H', W', C') [2, 24, 24, 24, 128] # Channel-first for block aggregation, and generally to replicate convnet feature map at each stage return x.permute(0, 4, 1, 2, 3) # (B, C, D', H', W') class NestTransformer3D(nn.Module): """Nested Transformer (NesT) A PyTorch impl of : `Aggregating Nested Transformers` - https://arxiv.org/abs/2105.12723 """ def __init__( self, img_size=96, in_chans=1, patch_size=2, num_levels=3, embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), num_classes=1000, mlp_ratio=4.0, qkv_bias=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.5, norm_layer=None, act_layer=None, pad_type="", weight_init="", global_pool="avg", ): """ Args: img_size (int, tuple): input image size in_chans (int): number of input channels patch_size (int): patch size num_levels (int): number of block hierarchies (T_d in the paper) embed_dims (int, tuple): embedding dimensions of each level num_heads (int, tuple): number of attention heads for each level depths (int, tuple): number of transformer layers for each level num_classes (int): number of classes for classification head mlp_ratio (int): ratio of mlp hidden dim to embedding dim for MLP of transformer layers qkv_bias (bool): enable bias for qkv if True drop_rate (float): dropout rate for MLP of transformer layers, MSA final projection layer, and classifier attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer: (nn.Module): normalization layer for transformer layers act_layer: (nn.Module): activation layer in MLP of transformer layers pad_type: str: Type of padding to use '' for PyTorch symmetric, 'same' for TF SAME weight_init: (str): weight init scheme global_pool: (str): type of pooling operation to apply to final feature map Notes: - Default values follow NesT-B from the original Jax code. - `embed_dims`, `num_heads`, `depths` should be ints or tuples with length `num_levels`. - For those following the paper, Table A1 may have errors! - https://github.com/google-research/nested-transformer/issues/2 """ super().__init__() for param_name in ["embed_dims", "num_heads", "depths"]: param_value = locals()[param_name] if isinstance(param_value, collections.abc.Sequence): assert len(param_value) == num_levels, f"Require `len({param_name}) == num_levels`" embed_dims = to_ntuple(num_levels)(embed_dims) num_heads = to_ntuple(num_levels)(num_heads) depths = to_ntuple(num_levels)(depths) self.num_classes = num_classes self.num_features = embed_dims[-1] self.feature_info = [] norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.drop_rate = drop_rate self.num_levels = num_levels if isinstance(img_size, collections.abc.Sequence): assert img_size[0] == img_size[1], "Model only handles square inputs" img_size = img_size[0] assert img_size % patch_size == 0, "`patch_size` must divide `img_size` evenly" self.patch_size = patch_size # Number of blocks at each level self.num_blocks = (8 ** torch.arange(num_levels)).flip(0).tolist() assert (img_size // patch_size) % round( math.pow(self.num_blocks[0], 1 / 3) ) == 0, "First level blocks don't fit evenly. Check `img_size`, `patch_size`, and `num_levels`" # Block edge size in units of patches # Hint: (img_size // patch_size) gives number of patches along edge of image. sqrt(self.num_blocks[0]) is the # number of blocks along edge of image self.block_size = int((img_size // patch_size) // round(math.pow(self.num_blocks[0], 1 / 3))) # Patch embedding self.patch_embed = PatchEmbed3D( img_size=[img_size, img_size, img_size], patch_size=[patch_size, patch_size, patch_size], in_chans=in_chans, embed_dim=embed_dims[0], ) self.num_patches = self.patch_embed.num_patches self.seq_length = self.num_patches // self.num_blocks[0] # Build up each hierarchical level levels = [] dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] prev_dim = None curr_stride = 4 for i in range(len(self.num_blocks)): dim = embed_dims[i] levels.append( NestLevel( self.num_blocks[i], self.block_size, self.seq_length, num_heads[i], depths[i], dim, prev_dim, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, dp_rates[i], norm_layer, act_layer, pad_type=pad_type, ) ) self.feature_info += [dict(num_chs=dim, reduction=curr_stride, module=f"levels.{i}")] prev_dim = dim curr_stride *= 2 self.levels = nn.ModuleList([levels[i] for i in range(num_levels)]) # Final normalization layer self.norm = norm_layer(embed_dims[-1]) self.init_weights(weight_init) def init_weights(self, mode=""): assert mode in ("nlhb", "") head_bias = -math.log(self.num_classes) if "nlhb" in mode else 0.0 for level in self.levels: trunc_normal_(level.pos_embed, std=0.02, a=-2, b=2) named_apply(partial(_init_nest_weights, head_bias=head_bias), self) @torch.jit.ignore def no_weight_decay(self): return {f"level.{i}.pos_embed" for i in range(len(self.levels))} def get_classifier(self): return self.head def forward_features(self, x): """x shape (B, C, D, H, W)""" x = self.patch_embed(x) hidden_states_out = [x] for _, level in enumerate(self.levels): x = level(x) hidden_states_out.append(x) # Layer norm done over channel dim only (to NDHWC and back) x = self.norm(x.permute(0, 2, 3, 4, 1)).permute(0, 4, 1, 2, 3) return x, hidden_states_out def forward(self, x): """x shape (B, C, D, H, W)""" x = self.forward_features(x) if self.drop_rate > 0.0: x = F.dropout(x, p=self.drop_rate, training=self.training) return x def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module: if not depth_first and include_root: fn(module=module, name=name) for child_name, child_module in module.named_children(): child_name = ".".join((name, child_name)) if name else child_name named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) if depth_first and include_root: fn(module=module, name=name) return module def _init_nest_weights(module: nn.Module, name: str = "", head_bias: float = 0.0): """NesT weight initialization Can replicate Jax implementation. Otherwise follows vision_transformer.py """ if isinstance(module, nn.Linear): if name.startswith("head"): trunc_normal_(module.weight, std=0.02, a=-2, b=2) nn.init.constant_(module.bias, head_bias) else: trunc_normal_(module.weight, std=0.02, a=-2, b=2) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Conv2d): trunc_normal_(module.weight, std=0.02, a=-2, b=2) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm2d)): nn.init.zeros_(module.bias) nn.init.ones_(module.weight) def resize_pos_embed(posemb, posemb_new): """ Rescale the grid of position embeddings when loading from state_dict Expected shape of position embeddings is (1, T, N, C), and considers only square images """ _logger.info("Resized position embedding: %s to %s", posemb.shape, posemb_new.shape) seq_length_old = posemb.shape[2] num_blocks_new, seq_length_new = posemb_new.shape[1:3] size_new = int(math.sqrt(num_blocks_new * seq_length_new)) # First change to (1, C, H, W) posemb = deblockify(posemb, int(math.sqrt(seq_length_old))).permute(0, 3, 1, 2) posemb = F.interpolate(posemb, size=[size_new, size_new], mode="bicubic", align_corners=False) # Now change to new (1, T, N, C) posemb = blockify(posemb.permute(0, 2, 3, 1), int(math.sqrt(seq_length_new))) return posemb def checkpoint_filter_fn(state_dict, model): """resize positional embeddings of pretrained weights""" pos_embed_keys = [k for k in state_dict.keys() if k.startswith("pos_embed_")] for k in pos_embed_keys: if state_dict[k].shape != getattr(model, k).shape: state_dict[k] = resize_pos_embed(state_dict[k], getattr(model, k)) return state_dict