monai
medical
katielink commited on
Commit
7c9464b
·
1 Parent(s): 276eb46

complete the model package

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ models/model.ts filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - monai
4
+ - medical
5
+ library_name: monai
6
+ license: unknown
7
+ ---
8
+ # Description
9
+ A pre-trained model for volumetric (3D) segmentation of the spleen from CT image.
10
+
11
+ # Model Overview
12
+ This model is trained using the runner-up [1] awarded pipeline of the "Medical Segmentation Decathlon Challenge 2018" using the UNet architecture [2] with 32 training images and 9 validation images.
13
+
14
+ ## Data
15
+ The training dataset is Task09_Spleen.tar from http://medicaldecathlon.com/.
16
+
17
+ ## Training configuration
18
+ The training was performed with at least 12GB-memory GPUs.
19
+
20
+ Actual Model Input: 96 x 96 x 96
21
+
22
+ ## Input and output formats
23
+ Input: 1 channel CT image
24
+
25
+ Output: 2 channels: Label 1: spleen; Label 0: everything else
26
+
27
+ ## Scores
28
+ This model achieves the following Dice score on the validation data (our own split from the training dataset):
29
+
30
+ Mean Dice = 0.96
31
+
32
+ ## commands example
33
+ Execute training:
34
+
35
+ ```
36
+ python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
37
+ ```
38
+
39
+ Override the `train` config to execute multi-GPU training:
40
+
41
+ ```
42
+ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
43
+ ```
44
+
45
+ Override the `train` config to execute evaluation with the trained model:
46
+
47
+ ```
48
+ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf
49
+ ```
50
+
51
+ Execute inference:
52
+
53
+ ```
54
+ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
55
+ ```
56
+
57
+ # Disclaimer
58
+ This is an example, not to be used for diagnostic purposes.
59
+
60
+ # References
61
+ [1] Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training." arXiv preprint arXiv:1811.12506 (2018). https://arxiv.org/abs/1811.12506.
62
+
63
+ [2] Kerfoot E., Clough J., Oksuz I., Lee J., King A.P., Schnabel J.A. (2019) Left-Ventricle Quantification Using Residual U-Net. In: Pop M. et al. (eds) Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40
configs/evaluate.json ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "validate#postprocessing": {
3
+ "_target_": "Compose",
4
+ "transforms": [
5
+ {
6
+ "_target_": "Activationsd",
7
+ "keys": "pred",
8
+ "softmax": true
9
+ },
10
+ {
11
+ "_target_": "Invertd",
12
+ "keys": [
13
+ "pred",
14
+ "label"
15
+ ],
16
+ "transform": "@validate#preprocessing",
17
+ "orig_keys": "image",
18
+ "meta_key_postfix": "meta_dict",
19
+ "nearest_interp": [
20
+ false,
21
+ true
22
+ ],
23
+ "to_tensor": true
24
+ },
25
+ {
26
+ "_target_": "AsDiscreted",
27
+ "keys": [
28
+ "pred",
29
+ "label"
30
+ ],
31
+ "argmax": [
32
+ true,
33
+ false
34
+ ],
35
+ "to_onehot": 2
36
+ },
37
+ {
38
+ "_target_": "SaveImaged",
39
+ "keys": "pred",
40
+ "meta_keys": "pred_meta_dict",
41
+ "output_dir": "@output_dir",
42
+ "resample": false,
43
+ "squeeze_end_dims": true
44
+ }
45
+ ]
46
+ },
47
+ "validate#handlers": [
48
+ {
49
+ "_target_": "CheckpointLoader",
50
+ "load_path": "$@ckpt_dir + '/model.pt'",
51
+ "load_dict": {
52
+ "model": "@network"
53
+ }
54
+ },
55
+ {
56
+ "_target_": "StatsHandler",
57
+ "iteration_log": false
58
+ },
59
+ {
60
+ "_target_": "MetricsSaver",
61
+ "save_dir": "@output_dir",
62
+ "metrics": [
63
+ "val_mean_dice",
64
+ "val_acc"
65
+ ],
66
+ "metric_details": [
67
+ "val_mean_dice"
68
+ ],
69
+ "batch_transform": "$monai.handlers.from_engine(['image_meta_dict'])",
70
+ "summary_ops": "*"
71
+ }
72
+ ],
73
+ "evaluating": [
74
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
75
+ "$@validate#evaluator.run()"
76
+ ]
77
+ }
configs/inference.json ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "imports": [
3
+ "$import glob",
4
+ "$import os"
5
+ ],
6
+ "bundle_root": "/workspace/data/tutorials/modules/bundle/spleen_segmentation",
7
+ "output_dir": "$@bundle_root + '/eval'",
8
+ "dataset_dir": "/workspace/data/Task09_Spleen",
9
+ "datalist": "$list(sorted(glob.glob(@dataset_dir + '/imagesTs/*.nii.gz')))",
10
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
11
+ "network_def": {
12
+ "_target_": "UNet",
13
+ "spatial_dims": 3,
14
+ "in_channels": 1,
15
+ "out_channels": 2,
16
+ "channels": [
17
+ 16,
18
+ 32,
19
+ 64,
20
+ 128,
21
+ 256
22
+ ],
23
+ "strides": [
24
+ 2,
25
+ 2,
26
+ 2,
27
+ 2
28
+ ],
29
+ "num_res_units": 2,
30
+ "norm": "batch"
31
+ },
32
+ "network": "$@network_def.to(@device)",
33
+ "preprocessing": {
34
+ "_target_": "Compose",
35
+ "transforms": [
36
+ {
37
+ "_target_": "LoadImaged",
38
+ "keys": "image"
39
+ },
40
+ {
41
+ "_target_": "EnsureChannelFirstd",
42
+ "keys": "image"
43
+ },
44
+ {
45
+ "_target_": "Orientationd",
46
+ "keys": "image",
47
+ "axcodes": "RAS"
48
+ },
49
+ {
50
+ "_target_": "Spacingd",
51
+ "keys": "image",
52
+ "pixdim": [
53
+ 1.5,
54
+ 1.5,
55
+ 2.0
56
+ ],
57
+ "mode": "bilinear"
58
+ },
59
+ {
60
+ "_target_": "ScaleIntensityRanged",
61
+ "keys": "image",
62
+ "a_min": -57,
63
+ "a_max": 164,
64
+ "b_min": 0,
65
+ "b_max": 1,
66
+ "clip": true
67
+ },
68
+ {
69
+ "_target_": "EnsureTyped",
70
+ "keys": "image"
71
+ }
72
+ ]
73
+ },
74
+ "dataset": {
75
+ "_target_": "Dataset",
76
+ "data": "$[{'image': i} for i in @datalist]",
77
+ "transform": "@preprocessing"
78
+ },
79
+ "dataloader": {
80
+ "_target_": "DataLoader",
81
+ "dataset": "@dataset",
82
+ "batch_size": 1,
83
+ "shuffle": false,
84
+ "num_workers": 4
85
+ },
86
+ "inferer": {
87
+ "_target_": "SlidingWindowInferer",
88
+ "roi_size": [
89
+ 96,
90
+ 96,
91
+ 96
92
+ ],
93
+ "sw_batch_size": 4,
94
+ "overlap": 0.5
95
+ },
96
+ "postprocessing": {
97
+ "_target_": "Compose",
98
+ "transforms": [
99
+ {
100
+ "_target_": "Activationsd",
101
+ "keys": "pred",
102
+ "softmax": true
103
+ },
104
+ {
105
+ "_target_": "Invertd",
106
+ "keys": "pred",
107
+ "transform": "@preprocessing",
108
+ "orig_keys": "image",
109
+ "meta_key_postfix": "meta_dict",
110
+ "nearest_interp": false,
111
+ "to_tensor": true
112
+ },
113
+ {
114
+ "_target_": "AsDiscreted",
115
+ "keys": "pred",
116
+ "argmax": true
117
+ },
118
+ {
119
+ "_target_": "SaveImaged",
120
+ "keys": "pred",
121
+ "meta_keys": "pred_meta_dict",
122
+ "output_dir": "@output_dir"
123
+ }
124
+ ]
125
+ },
126
+ "handlers": [
127
+ {
128
+ "_target_": "CheckpointLoader",
129
+ "load_path": "$@bundle_root + '/models/model.pt'",
130
+ "load_dict": {
131
+ "model": "@network"
132
+ }
133
+ },
134
+ {
135
+ "_target_": "StatsHandler",
136
+ "iteration_log": false
137
+ }
138
+ ],
139
+ "evaluator": {
140
+ "_target_": "SupervisedEvaluator",
141
+ "device": "@device",
142
+ "val_data_loader": "@dataloader",
143
+ "network": "@network",
144
+ "inferer": "@inferer",
145
+ "postprocessing": "@postprocessing",
146
+ "val_handlers": "@handlers",
147
+ "amp": true
148
+ },
149
+ "evaluating": [
150
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
151
+ "$@evaluator.run()"
152
+ ]
153
+ }
configs/logging.conf ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [loggers]
2
+ keys=root
3
+
4
+ [handlers]
5
+ keys=consoleHandler
6
+
7
+ [formatters]
8
+ keys=fullFormatter
9
+
10
+ [logger_root]
11
+ level=INFO
12
+ handlers=consoleHandler
13
+
14
+ [handler_consoleHandler]
15
+ class=StreamHandler
16
+ level=INFO
17
+ formatter=fullFormatter
18
+ args=(sys.stdout,)
19
+
20
+ [formatter_fullFormatter]
21
+ format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
configs/metadata.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.1.0",
4
+ "changelog": {
5
+ "0.1.0": "complete the model package",
6
+ "0.0.1": "initialize the model package structure"
7
+ },
8
+ "monai_version": "0.9.0",
9
+ "pytorch_version": "1.10.0",
10
+ "numpy_version": "1.21.2",
11
+ "optional_packages_version": {
12
+ "nibabel": "3.2.1",
13
+ "pytorch-ignite": "0.4.8"
14
+ },
15
+ "task": "Decathlon spleen segmentation",
16
+ "description": "A pre-trained model for volumetric (3D) segmentation of the spleen from CT image",
17
+ "authors": "MONAI team",
18
+ "copyright": "Copyright (c) MONAI Consortium",
19
+ "data_source": "Task09_Spleen.tar from http://medicaldecathlon.com/",
20
+ "data_type": "nibabel",
21
+ "image_classes": "single channel data, intensity scaled to [0, 1]",
22
+ "label_classes": "single channel data, 1 is spleen, 0 is everything else",
23
+ "pred_classes": "2 channels OneHot data, channel 1 is spleen, channel 0 is background",
24
+ "eval_metrics": {
25
+ "mean_dice": 0.96
26
+ },
27
+ "intended_use": "This is an example, not to be used for diagnostic purposes",
28
+ "references": [
29
+ "Xia, Yingda, et al. '3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training. arXiv preprint arXiv:1811.12506 (2018). https://arxiv.org/abs/1811.12506.",
30
+ "Kerfoot E., Clough J., Oksuz I., Lee J., King A.P., Schnabel J.A. (2019) Left-Ventricle Quantification Using Residual U-Net. In: Pop M. et al. (eds) Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40"
31
+ ],
32
+ "network_data_format": {
33
+ "inputs": {
34
+ "image": {
35
+ "type": "image",
36
+ "format": "hounsfield",
37
+ "modality": "CT",
38
+ "num_channels": 1,
39
+ "spatial_shape": [
40
+ 96,
41
+ 96,
42
+ 96
43
+ ],
44
+ "dtype": "float32",
45
+ "value_range": [
46
+ 0,
47
+ 1
48
+ ],
49
+ "is_patch_data": true,
50
+ "channel_def": {
51
+ "0": "image"
52
+ }
53
+ }
54
+ },
55
+ "outputs": {
56
+ "pred": {
57
+ "type": "image",
58
+ "format": "segmentation",
59
+ "num_channels": 2,
60
+ "spatial_shape": [
61
+ 96,
62
+ 96,
63
+ 96
64
+ ],
65
+ "dtype": "float32",
66
+ "value_range": [
67
+ 0,
68
+ 1
69
+ ],
70
+ "is_patch_data": true,
71
+ "channel_def": {
72
+ "0": "background",
73
+ "1": "spleen"
74
+ }
75
+ }
76
+ }
77
+ }
78
+ }
configs/multi_gpu_train.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "device": "$torch.device(f'cuda:{dist.get_rank()}')",
3
+ "network": {
4
+ "_target_": "torch.nn.parallel.DistributedDataParallel",
5
+ "module": "$@network_def.to(@device)",
6
+ "device_ids": [
7
+ "@device"
8
+ ]
9
+ },
10
+ "train#sampler": {
11
+ "_target_": "DistributedSampler",
12
+ "dataset": "@train#dataset",
13
+ "even_divisible": true,
14
+ "shuffle": true
15
+ },
16
+ "train#dataloader#sampler": "@train#sampler",
17
+ "train#dataloader#shuffle": false,
18
+ "train#trainer#train_handlers": "$@train#handlers[: -2 if dist.get_rank() > 0 else None]",
19
+ "validate#sampler": {
20
+ "_target_": "DistributedSampler",
21
+ "dataset": "@validate#dataset",
22
+ "even_divisible": false,
23
+ "shuffle": false
24
+ },
25
+ "validate#dataloader#sampler": "@validate#sampler",
26
+ "validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
27
+ "training": [
28
+ "$import torch.distributed as dist",
29
+ "$dist.init_process_group(backend='nccl')",
30
+ "$torch.cuda.set_device(@device)",
31
+ "$monai.utils.set_determinism(seed=123)",
32
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
33
+ "$@train#trainer.run()",
34
+ "$dist.destroy_process_group()"
35
+ ]
36
+ }
configs/train.json ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "imports": [
3
+ "$import glob",
4
+ "$import os",
5
+ "$import ignite"
6
+ ],
7
+ "bundle_root": "/workspace/data/tutorials/modules/bundle/spleen_segmentation",
8
+ "ckpt_dir": "$@bundle_root + '/models'",
9
+ "output_dir": "$@bundle_root + '/eval'",
10
+ "dataset_dir": "/workspace/data/Task09_Spleen",
11
+ "images": "$list(sorted(glob.glob(@dataset_dir + '/imagesTr/*.nii.gz')))",
12
+ "labels": "$list(sorted(glob.glob(@dataset_dir + '/labelsTr/*.nii.gz')))",
13
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
14
+ "network_def": {
15
+ "_target_": "UNet",
16
+ "spatial_dims": 3,
17
+ "in_channels": 1,
18
+ "out_channels": 2,
19
+ "channels": [
20
+ 16,
21
+ 32,
22
+ 64,
23
+ 128,
24
+ 256
25
+ ],
26
+ "strides": [
27
+ 2,
28
+ 2,
29
+ 2,
30
+ 2
31
+ ],
32
+ "num_res_units": 2,
33
+ "norm": "batch"
34
+ },
35
+ "network": "$@network_def.to(@device)",
36
+ "loss": {
37
+ "_target_": "DiceCELoss",
38
+ "to_onehot_y": true,
39
+ "softmax": true,
40
+ "squared_pred": true,
41
+ "batch": true
42
+ },
43
+ "optimizer": {
44
+ "_target_": "torch.optim.Adam",
45
+ "params": "$@network.parameters()",
46
+ "lr": 0.0001
47
+ },
48
+ "train": {
49
+ "deterministic_transforms": [
50
+ {
51
+ "_target_": "LoadImaged",
52
+ "keys": [
53
+ "image",
54
+ "label"
55
+ ]
56
+ },
57
+ {
58
+ "_target_": "EnsureChannelFirstd",
59
+ "keys": [
60
+ "image",
61
+ "label"
62
+ ]
63
+ },
64
+ {
65
+ "_target_": "Orientationd",
66
+ "keys": [
67
+ "image",
68
+ "label"
69
+ ],
70
+ "axcodes": "RAS"
71
+ },
72
+ {
73
+ "_target_": "Spacingd",
74
+ "keys": [
75
+ "image",
76
+ "label"
77
+ ],
78
+ "pixdim": [
79
+ 1.5,
80
+ 1.5,
81
+ 2.0
82
+ ],
83
+ "mode": [
84
+ "bilinear",
85
+ "nearest"
86
+ ]
87
+ },
88
+ {
89
+ "_target_": "ScaleIntensityRanged",
90
+ "keys": "image",
91
+ "a_min": -57,
92
+ "a_max": 164,
93
+ "b_min": 0,
94
+ "b_max": 1,
95
+ "clip": true
96
+ },
97
+ {
98
+ "_target_": "EnsureTyped",
99
+ "keys": [
100
+ "image",
101
+ "label"
102
+ ]
103
+ }
104
+ ],
105
+ "random_transforms": [
106
+ {
107
+ "_target_": "RandCropByPosNegLabeld",
108
+ "keys": [
109
+ "image",
110
+ "label"
111
+ ],
112
+ "label_key": "label",
113
+ "spatial_size": [
114
+ 96,
115
+ 96,
116
+ 96
117
+ ],
118
+ "pos": 1,
119
+ "neg": 1,
120
+ "num_samples": 4,
121
+ "image_key": "image",
122
+ "image_threshold": 0
123
+ }
124
+ ],
125
+ "preprocessing": {
126
+ "_target_": "Compose",
127
+ "transforms": "$@train#deterministic_transforms + @train#random_transforms"
128
+ },
129
+ "dataset": {
130
+ "_target_": "CacheDataset",
131
+ "data": "$[{'image': i, 'label': l} for i, l in zip(@images[:-9], @labels[:-9])]",
132
+ "transform": "@train#preprocessing",
133
+ "cache_rate": 1.0,
134
+ "num_workers": 4
135
+ },
136
+ "dataloader": {
137
+ "_target_": "DataLoader",
138
+ "dataset": "@train#dataset",
139
+ "batch_size": 2,
140
+ "shuffle": true,
141
+ "num_workers": 4
142
+ },
143
+ "inferer": {
144
+ "_target_": "SimpleInferer"
145
+ },
146
+ "postprocessing": {
147
+ "_target_": "Compose",
148
+ "transforms": [
149
+ {
150
+ "_target_": "Activationsd",
151
+ "keys": "pred",
152
+ "softmax": true
153
+ },
154
+ {
155
+ "_target_": "AsDiscreted",
156
+ "keys": [
157
+ "pred",
158
+ "label"
159
+ ],
160
+ "argmax": [
161
+ true,
162
+ false
163
+ ],
164
+ "to_onehot": 2
165
+ }
166
+ ]
167
+ },
168
+ "handlers": [
169
+ {
170
+ "_target_": "ValidationHandler",
171
+ "validator": "@validate#evaluator",
172
+ "epoch_level": true,
173
+ "interval": 5
174
+ },
175
+ {
176
+ "_target_": "StatsHandler",
177
+ "tag_name": "train_loss",
178
+ "output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
179
+ },
180
+ {
181
+ "_target_": "TensorBoardStatsHandler",
182
+ "log_dir": "@output_dir",
183
+ "tag_name": "train_loss",
184
+ "output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
185
+ }
186
+ ],
187
+ "key_metric": {
188
+ "train_accuracy": {
189
+ "_target_": "ignite.metrics.Accuracy",
190
+ "output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
191
+ }
192
+ },
193
+ "trainer": {
194
+ "_target_": "SupervisedTrainer",
195
+ "max_epochs": 100,
196
+ "device": "@device",
197
+ "train_data_loader": "@train#dataloader",
198
+ "network": "@network",
199
+ "loss_function": "@loss",
200
+ "optimizer": "@optimizer",
201
+ "inferer": "@train#inferer",
202
+ "postprocessing": "@train#postprocessing",
203
+ "key_train_metric": "@train#key_metric",
204
+ "train_handlers": "@train#handlers",
205
+ "amp": true
206
+ }
207
+ },
208
+ "validate": {
209
+ "preprocessing": {
210
+ "_target_": "Compose",
211
+ "transforms": "%train#deterministic_transforms"
212
+ },
213
+ "dataset": {
214
+ "_target_": "CacheDataset",
215
+ "data": "$[{'image': i, 'label': l} for i, l in zip(@images[-9:], @labels[-9:])]",
216
+ "transform": "@validate#preprocessing",
217
+ "cache_rate": 1.0
218
+ },
219
+ "dataloader": {
220
+ "_target_": "DataLoader",
221
+ "dataset": "@validate#dataset",
222
+ "batch_size": 1,
223
+ "shuffle": false,
224
+ "num_workers": 4
225
+ },
226
+ "inferer": {
227
+ "_target_": "SlidingWindowInferer",
228
+ "roi_size": [
229
+ 96,
230
+ 96,
231
+ 96
232
+ ],
233
+ "sw_batch_size": 4,
234
+ "overlap": 0.5
235
+ },
236
+ "postprocessing": "%train#postprocessing",
237
+ "handlers": [
238
+ {
239
+ "_target_": "StatsHandler",
240
+ "iteration_log": false
241
+ },
242
+ {
243
+ "_target_": "TensorBoardStatsHandler",
244
+ "log_dir": "@output_dir",
245
+ "iteration_log": false
246
+ },
247
+ {
248
+ "_target_": "CheckpointSaver",
249
+ "save_dir": "@ckpt_dir",
250
+ "save_dict": {
251
+ "model": "@network"
252
+ },
253
+ "save_key_metric": true,
254
+ "key_metric_filename": "model.pt"
255
+ }
256
+ ],
257
+ "key_metric": {
258
+ "val_mean_dice": {
259
+ "_target_": "MeanDice",
260
+ "include_background": false,
261
+ "output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
262
+ }
263
+ },
264
+ "additional_metrics": {
265
+ "val_accuracy": {
266
+ "_target_": "ignite.metrics.Accuracy",
267
+ "output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
268
+ }
269
+ },
270
+ "evaluator": {
271
+ "_target_": "SupervisedEvaluator",
272
+ "device": "@device",
273
+ "val_data_loader": "@validate#dataloader",
274
+ "network": "@network",
275
+ "inferer": "@validate#inferer",
276
+ "postprocessing": "@validate#postprocessing",
277
+ "key_val_metric": "@validate#key_metric",
278
+ "additional_metrics": "@validate#additional_metrics",
279
+ "val_handlers": "@validate#handlers",
280
+ "amp": true
281
+ }
282
+ },
283
+ "training": [
284
+ "$monai.utils.set_determinism(seed=123)",
285
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
286
+ "$@train#trainer.run()"
287
+ ]
288
+ }
docs/README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Description
2
+ A pre-trained model for volumetric (3D) segmentation of the spleen from CT image.
3
+
4
+ # Model Overview
5
+ This model is trained using the runner-up [1] awarded pipeline of the "Medical Segmentation Decathlon Challenge 2018" using the UNet architecture [2] with 32 training images and 9 validation images.
6
+
7
+ ## Data
8
+ The training dataset is Task09_Spleen.tar from http://medicaldecathlon.com/.
9
+
10
+ ## Training configuration
11
+ The training was performed with at least 12GB-memory GPUs.
12
+
13
+ Actual Model Input: 96 x 96 x 96
14
+
15
+ ## Input and output formats
16
+ Input: 1 channel CT image
17
+
18
+ Output: 2 channels: Label 1: spleen; Label 0: everything else
19
+
20
+ ## Scores
21
+ This model achieves the following Dice score on the validation data (our own split from the training dataset):
22
+
23
+ Mean Dice = 0.96
24
+
25
+ ## commands example
26
+ Execute training:
27
+
28
+ ```
29
+ python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
30
+ ```
31
+
32
+ Override the `train` config to execute multi-GPU training:
33
+
34
+ ```
35
+ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
36
+ ```
37
+
38
+ Override the `train` config to execute evaluation with the trained model:
39
+
40
+ ```
41
+ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf
42
+ ```
43
+
44
+ Execute inference:
45
+
46
+ ```
47
+ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
48
+ ```
49
+
50
+ # Disclaimer
51
+ This is an example, not to be used for diagnostic purposes.
52
+
53
+ # References
54
+ [1] Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training." arXiv preprint arXiv:1811.12506 (2018). https://arxiv.org/abs/1811.12506.
55
+
56
+ [2] Kerfoot E., Clough J., Oksuz I., Lee J., King A.P., Schnabel J.A. (2019) Left-Ventricle Quantification Using Residual U-Net. In: Pop M. et al. (eds) Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40
docs/license.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Third Party Licenses
2
+ -----------------------------------------------------------------------
3
+
4
+ /*********************************************************************/
5
+ i. Medical Segmentation Decathlon
6
+ http://medicaldecathlon.com/
models/model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb453bda5be3653f3eec5795de5c5435c41e4b712e7d39e2d44f2461aab7ac8
3
+ size 19303897
models/model.ts ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bfeacbda35620f7a8edd7a5b75dc34255a234bb516dfd5c8df1408191c5159a
3
+ size 19398019