Add training support for whole brain segmentation, users can use active learning in the MONAI Label
Browse files- README.md +15 -3
- configs/metadata.json +3 -2
- configs/multi_gpu_train.json +36 -0
- configs/train.json +299 -0
- docs/README.md +15 -3
- docs/training.png +0 -0
README.md
CHANGED
@@ -7,7 +7,8 @@ license: unknown
|
|
7 |
---
|
8 |
# Description
|
9 |
Detailed whole brain segmentation is an essential quantitative technique in medical image analysis, which provides a non-invasive way of measuring brain regions from a clinical acquired structural magnetic resonance imaging (MRI).
|
10 |
-
We provide the pre-trained model for inferencing whole brain segmentation with 133 structures.
|
|
|
11 |
|
12 |
A tutorial and release of model for whole brain segmentation using the 3D transformer-based segmentation model UNEST.
|
13 |
|
@@ -27,7 +28,7 @@ Fig.1 - The demonstration of T1w MRI images registered in MNI space and the whol
|
|
27 |
|
28 |
|
29 |
# Model Overview
|
30 |
-
A pre-trained
|
31 |
To leverage information across embedded sequences, ”shifted window” transformers
|
32 |
are proposed for dense predictions and modeling multi-scale features. However, these
|
33 |
attempts that aim to complicate the self-attention range often yield high computation
|
@@ -97,6 +98,11 @@ Add scripts component: To run the workflow with customized components, PYTHONPA
|
|
97 |
export PYTHONPATH=$PYTHONPATH: '<path to the bundle root dir>/scripts'
|
98 |
```
|
99 |
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
Execute inference:
|
102 |
|
@@ -111,6 +117,12 @@ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config
|
|
111 |
Fig.3 - The output prediction comparison with variant and ground truth
|
112 |
</p>
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
## Complete ROI of the whole brain segmentation
|
116 |
133 brain structures are segmented.
|
@@ -154,7 +166,7 @@ Fig.3 - The output prediction comparison with variant and ground truth
|
|
154 |
|
155 |
|
156 |
## Bundle Integration in MONAI Lable
|
157 |
-
The inference pipleine can be easily used by the MONAI Label server and 3D Slicer for fast labeling T1w MRI images in MNI space.
|
158 |
|
159 |
![](./3DSlicer_use.png) <br>
|
160 |
|
|
|
7 |
---
|
8 |
# Description
|
9 |
Detailed whole brain segmentation is an essential quantitative technique in medical image analysis, which provides a non-invasive way of measuring brain regions from a clinical acquired structural magnetic resonance imaging (MRI).
|
10 |
+
We provide the pre-trained model for training and inferencing whole brain segmentation with 133 structures.
|
11 |
+
Training pipeline is provided to support active learning in MONAI Label and training with bundle.
|
12 |
|
13 |
A tutorial and release of model for whole brain segmentation using the 3D transformer-based segmentation model UNEST.
|
14 |
|
|
|
28 |
|
29 |
|
30 |
# Model Overview
|
31 |
+
A pre-trained UNEST base model [1] for volumetric (3D) whole brain segmentation with T1w MR images.
|
32 |
To leverage information across embedded sequences, ”shifted window” transformers
|
33 |
are proposed for dense predictions and modeling multi-scale features. However, these
|
34 |
attempts that aim to complicate the self-attention range often yield high computation
|
|
|
98 |
export PYTHONPATH=$PYTHONPATH: '<path to the bundle root dir>/scripts'
|
99 |
```
|
100 |
|
101 |
+
Execute Training:
|
102 |
+
|
103 |
+
```
|
104 |
+
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
|
105 |
+
```
|
106 |
|
107 |
Execute inference:
|
108 |
|
|
|
117 |
Fig.3 - The output prediction comparison with variant and ground truth
|
118 |
</p>
|
119 |
|
120 |
+
## Training/Validation Benchmarking
|
121 |
+
A graph showing the training accuracy for fine-tuning 600 epochs.
|
122 |
+
|
123 |
+
![](./training.png) <br>
|
124 |
+
|
125 |
+
With 10 fine-tuned labels, the training process converges fast.
|
126 |
|
127 |
## Complete ROI of the whole brain segmentation
|
128 |
133 brain structures are segmented.
|
|
|
166 |
|
167 |
|
168 |
## Bundle Integration in MONAI Lable
|
169 |
+
The inference and training pipleine can be easily used by the MONAI Label server and 3D Slicer for fast labeling T1w MRI images in MNI space.
|
170 |
|
171 |
![](./3DSlicer_use.png) <br>
|
172 |
|
configs/metadata.json
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.1.
|
4 |
"changelog": {
|
|
|
5 |
"0.1.1": "Fix dimension according to MONAI 1.0 and fix readme file",
|
6 |
"0.1.0": "complete the model package"
|
7 |
},
|
8 |
-
"monai_version": "0.
|
9 |
"pytorch_version": "1.10.0",
|
10 |
"numpy_version": "1.21.2",
|
11 |
"optional_packages_version": {
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.1.2",
|
4 |
"changelog": {
|
5 |
+
"0.1.2": "Add training support for whole brain segmentation, users can use active learning in the MONAI Label",
|
6 |
"0.1.1": "Fix dimension according to MONAI 1.0 and fix readme file",
|
7 |
"0.1.0": "complete the model package"
|
8 |
},
|
9 |
+
"monai_version": "1.0.0",
|
10 |
"pytorch_version": "1.10.0",
|
11 |
"numpy_version": "1.21.2",
|
12 |
"optional_packages_version": {
|
configs/multi_gpu_train.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"device": "$torch.device(f'cuda:{dist.get_rank()}')",
|
3 |
+
"network": {
|
4 |
+
"_target_": "torch.nn.parallel.DistributedDataParallel",
|
5 |
+
"module": "$@network_def.to(@device)",
|
6 |
+
"device_ids": [
|
7 |
+
"@device"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"train#sampler": {
|
11 |
+
"_target_": "DistributedSampler",
|
12 |
+
"dataset": "@train#dataset",
|
13 |
+
"even_divisible": true,
|
14 |
+
"shuffle": true
|
15 |
+
},
|
16 |
+
"train#dataloader#sampler": "@train#sampler",
|
17 |
+
"train#dataloader#shuffle": false,
|
18 |
+
"train#trainer#train_handlers": "$@train#handlers[: -2 if dist.get_rank() > 0 else None]",
|
19 |
+
"validate#sampler": {
|
20 |
+
"_target_": "DistributedSampler",
|
21 |
+
"dataset": "@validate#dataset",
|
22 |
+
"even_divisible": false,
|
23 |
+
"shuffle": false
|
24 |
+
},
|
25 |
+
"validate#dataloader#sampler": "@validate#sampler",
|
26 |
+
"validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
|
27 |
+
"training": [
|
28 |
+
"$import torch.distributed as dist",
|
29 |
+
"$dist.init_process_group(backend='nccl')",
|
30 |
+
"$torch.cuda.set_device(@device)",
|
31 |
+
"$monai.utils.set_determinism(seed=123)",
|
32 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
33 |
+
"$@train#trainer.run()",
|
34 |
+
"$dist.destroy_process_group()"
|
35 |
+
]
|
36 |
+
}
|
configs/train.json
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imports": [
|
3 |
+
"$import glob",
|
4 |
+
"$import os",
|
5 |
+
"$import ignite"
|
6 |
+
],
|
7 |
+
"bundle_root": ".",
|
8 |
+
"ckpt_dir": "$@bundle_root + '/models'",
|
9 |
+
"output_dir": "$@bundle_root + '/eval'",
|
10 |
+
"dataset_dir": "$@bundle_root + '/dataset/brain'",
|
11 |
+
"images": "$list(sorted(glob.glob(@dataset_dir + '/images/*.nii.gz')))",
|
12 |
+
"labels": "$list(sorted(glob.glob(@dataset_dir + '/labels/*.nii.gz')))",
|
13 |
+
"val_interval": 5,
|
14 |
+
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
15 |
+
"network_def": {
|
16 |
+
"_target_": "scripts.networks.unest_base_patch_4.UNesT",
|
17 |
+
"in_channels": 1,
|
18 |
+
"out_channels": 133,
|
19 |
+
"patch_size": 4,
|
20 |
+
"depths": [
|
21 |
+
2,
|
22 |
+
2,
|
23 |
+
8
|
24 |
+
],
|
25 |
+
"embed_dim": [
|
26 |
+
128,
|
27 |
+
256,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"num_heads": [
|
31 |
+
4,
|
32 |
+
8,
|
33 |
+
16
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"network": "$@network_def.to(@device)",
|
37 |
+
"loss": {
|
38 |
+
"_target_": "DiceCELoss",
|
39 |
+
"to_onehot_y": true,
|
40 |
+
"softmax": true,
|
41 |
+
"squared_pred": true,
|
42 |
+
"batch": true
|
43 |
+
},
|
44 |
+
"optimizer": {
|
45 |
+
"_target_": "torch.optim.Adam",
|
46 |
+
"params": "$@network.parameters()",
|
47 |
+
"lr": 0.0001
|
48 |
+
},
|
49 |
+
"train": {
|
50 |
+
"deterministic_transforms": [
|
51 |
+
{
|
52 |
+
"_target_": "LoadImaged",
|
53 |
+
"keys": [
|
54 |
+
"image",
|
55 |
+
"label"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"_target_": "EnsureChannelFirstd",
|
60 |
+
"keys": [
|
61 |
+
"image",
|
62 |
+
"label"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"_target_": "EnsureTyped",
|
67 |
+
"keys": [
|
68 |
+
"image",
|
69 |
+
"label"
|
70 |
+
]
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"random_transforms": [
|
74 |
+
{
|
75 |
+
"_target_": "RandSpatialCropd",
|
76 |
+
"keys": [
|
77 |
+
"image",
|
78 |
+
"label"
|
79 |
+
],
|
80 |
+
"roi_size": [
|
81 |
+
96,
|
82 |
+
96,
|
83 |
+
96
|
84 |
+
],
|
85 |
+
"random_size": false
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"_target_": "RandFlipd",
|
89 |
+
"keys": [
|
90 |
+
"image",
|
91 |
+
"label"
|
92 |
+
],
|
93 |
+
"spatial_axis": [
|
94 |
+
0
|
95 |
+
],
|
96 |
+
"prob": 0.1
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"_target_": "RandFlipd",
|
100 |
+
"keys": [
|
101 |
+
"image",
|
102 |
+
"label"
|
103 |
+
],
|
104 |
+
"spatial_axis": [
|
105 |
+
1
|
106 |
+
],
|
107 |
+
"prob": 0.1
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"_target_": "RandFlipd",
|
111 |
+
"keys": [
|
112 |
+
"image",
|
113 |
+
"label"
|
114 |
+
],
|
115 |
+
"spatial_axis": [
|
116 |
+
2
|
117 |
+
],
|
118 |
+
"prob": 0.1
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"_target_": "RandRotate90d",
|
122 |
+
"keys": [
|
123 |
+
"image",
|
124 |
+
"label"
|
125 |
+
],
|
126 |
+
"max_k": 3,
|
127 |
+
"prob": 0.1
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"_target_": "NormalizeIntensityd",
|
131 |
+
"keys": "image",
|
132 |
+
"nonzero": true,
|
133 |
+
"channel_wise": true
|
134 |
+
}
|
135 |
+
],
|
136 |
+
"preprocessing": {
|
137 |
+
"_target_": "Compose",
|
138 |
+
"transforms": "$@train#deterministic_transforms + @train#random_transforms"
|
139 |
+
},
|
140 |
+
"dataset": {
|
141 |
+
"_target_": "CacheDataset",
|
142 |
+
"data": "$[{'image': i, 'label': l} for i, l in zip(@images[:-2], @labels[:-2])]",
|
143 |
+
"transform": "@train#preprocessing",
|
144 |
+
"cache_rate": 1.0,
|
145 |
+
"num_workers": 2
|
146 |
+
},
|
147 |
+
"dataloader": {
|
148 |
+
"_target_": "DataLoader",
|
149 |
+
"dataset": "@train#dataset",
|
150 |
+
"batch_size": 1,
|
151 |
+
"shuffle": true,
|
152 |
+
"num_workers": 1
|
153 |
+
},
|
154 |
+
"inferer": {
|
155 |
+
"_target_": "SimpleInferer"
|
156 |
+
},
|
157 |
+
"postprocessing": {
|
158 |
+
"_target_": "Compose",
|
159 |
+
"transforms": [
|
160 |
+
{
|
161 |
+
"_target_": "Activationsd",
|
162 |
+
"keys": "pred",
|
163 |
+
"softmax": true
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"_target_": "AsDiscreted",
|
167 |
+
"keys": [
|
168 |
+
"pred",
|
169 |
+
"label"
|
170 |
+
],
|
171 |
+
"argmax": [
|
172 |
+
true,
|
173 |
+
false
|
174 |
+
],
|
175 |
+
"to_onehot": 133
|
176 |
+
}
|
177 |
+
]
|
178 |
+
},
|
179 |
+
"handlers": [
|
180 |
+
{
|
181 |
+
"_target_": "ValidationHandler",
|
182 |
+
"validator": "@validate#evaluator",
|
183 |
+
"epoch_level": true,
|
184 |
+
"interval": "@val_interval"
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"_target_": "StatsHandler",
|
188 |
+
"tag_name": "train_loss",
|
189 |
+
"output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"_target_": "TensorBoardStatsHandler",
|
193 |
+
"log_dir": "@output_dir",
|
194 |
+
"tag_name": "train_loss",
|
195 |
+
"output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
|
196 |
+
}
|
197 |
+
],
|
198 |
+
"key_metric": {
|
199 |
+
"train_accuracy": {
|
200 |
+
"_target_": "ignite.metrics.Accuracy",
|
201 |
+
"output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
|
202 |
+
}
|
203 |
+
},
|
204 |
+
"trainer": {
|
205 |
+
"_target_": "SupervisedTrainer",
|
206 |
+
"max_epochs": 2000,
|
207 |
+
"device": "@device",
|
208 |
+
"train_data_loader": "@train#dataloader",
|
209 |
+
"network": "@network",
|
210 |
+
"loss_function": "@loss",
|
211 |
+
"optimizer": "@optimizer",
|
212 |
+
"inferer": "@train#inferer",
|
213 |
+
"postprocessing": "@train#postprocessing",
|
214 |
+
"key_train_metric": "@train#key_metric",
|
215 |
+
"train_handlers": "@train#handlers",
|
216 |
+
"amp": true
|
217 |
+
}
|
218 |
+
},
|
219 |
+
"validate": {
|
220 |
+
"preprocessing": {
|
221 |
+
"_target_": "Compose",
|
222 |
+
"transforms": "%train#deterministic_transforms"
|
223 |
+
},
|
224 |
+
"dataset": {
|
225 |
+
"_target_": "CacheDataset",
|
226 |
+
"data": "$[{'image': i, 'label': l} for i, l in zip(@images[-2:], @labels[-2:])]",
|
227 |
+
"transform": "@validate#preprocessing",
|
228 |
+
"cache_rate": 1.0
|
229 |
+
},
|
230 |
+
"dataloader": {
|
231 |
+
"_target_": "DataLoader",
|
232 |
+
"dataset": "@validate#dataset",
|
233 |
+
"batch_size": 2,
|
234 |
+
"shuffle": false,
|
235 |
+
"num_workers": 1
|
236 |
+
},
|
237 |
+
"inferer": {
|
238 |
+
"_target_": "SlidingWindowInferer",
|
239 |
+
"roi_size": [
|
240 |
+
96,
|
241 |
+
96,
|
242 |
+
96
|
243 |
+
],
|
244 |
+
"sw_batch_size": 4,
|
245 |
+
"overlap": 0.5
|
246 |
+
},
|
247 |
+
"postprocessing": "%train#postprocessing",
|
248 |
+
"handlers": [
|
249 |
+
{
|
250 |
+
"_target_": "StatsHandler",
|
251 |
+
"iteration_log": false
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"_target_": "TensorBoardStatsHandler",
|
255 |
+
"log_dir": "@output_dir",
|
256 |
+
"iteration_log": false
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"_target_": "CheckpointSaver",
|
260 |
+
"save_dir": "@ckpt_dir",
|
261 |
+
"save_dict": {
|
262 |
+
"model": "@network"
|
263 |
+
},
|
264 |
+
"save_key_metric": true,
|
265 |
+
"key_metric_filename": "model.pt"
|
266 |
+
}
|
267 |
+
],
|
268 |
+
"key_metric": {
|
269 |
+
"val_mean_dice": {
|
270 |
+
"_target_": "MeanDice",
|
271 |
+
"include_background": false,
|
272 |
+
"output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
|
273 |
+
}
|
274 |
+
},
|
275 |
+
"additional_metrics": {
|
276 |
+
"val_accuracy": {
|
277 |
+
"_target_": "ignite.metrics.Accuracy",
|
278 |
+
"output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
|
279 |
+
}
|
280 |
+
},
|
281 |
+
"evaluator": {
|
282 |
+
"_target_": "SupervisedEvaluator",
|
283 |
+
"device": "@device",
|
284 |
+
"val_data_loader": "@validate#dataloader",
|
285 |
+
"network": "@network",
|
286 |
+
"inferer": "@validate#inferer",
|
287 |
+
"postprocessing": "@validate#postprocessing",
|
288 |
+
"key_val_metric": "@validate#key_metric",
|
289 |
+
"additional_metrics": "@validate#additional_metrics",
|
290 |
+
"val_handlers": "@validate#handlers",
|
291 |
+
"amp": true
|
292 |
+
}
|
293 |
+
},
|
294 |
+
"training": [
|
295 |
+
"$monai.utils.set_determinism(seed=123)",
|
296 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
297 |
+
"$@train#trainer.run()"
|
298 |
+
]
|
299 |
+
}
|
docs/README.md
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
# Description
|
2 |
Detailed whole brain segmentation is an essential quantitative technique in medical image analysis, which provides a non-invasive way of measuring brain regions from a clinical acquired structural magnetic resonance imaging (MRI).
|
3 |
-
We provide the pre-trained model for inferencing whole brain segmentation with 133 structures.
|
|
|
4 |
|
5 |
A tutorial and release of model for whole brain segmentation using the 3D transformer-based segmentation model UNEST.
|
6 |
|
@@ -20,7 +21,7 @@ Fig.1 - The demonstration of T1w MRI images registered in MNI space and the whol
|
|
20 |
|
21 |
|
22 |
# Model Overview
|
23 |
-
A pre-trained
|
24 |
To leverage information across embedded sequences, ”shifted window” transformers
|
25 |
are proposed for dense predictions and modeling multi-scale features. However, these
|
26 |
attempts that aim to complicate the self-attention range often yield high computation
|
@@ -90,6 +91,11 @@ Add scripts component: To run the workflow with customized components, PYTHONPA
|
|
90 |
export PYTHONPATH=$PYTHONPATH: '<path to the bundle root dir>/scripts'
|
91 |
```
|
92 |
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
Execute inference:
|
95 |
|
@@ -104,6 +110,12 @@ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config
|
|
104 |
Fig.3 - The output prediction comparison with variant and ground truth
|
105 |
</p>
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
## Complete ROI of the whole brain segmentation
|
109 |
133 brain structures are segmented.
|
@@ -147,7 +159,7 @@ Fig.3 - The output prediction comparison with variant and ground truth
|
|
147 |
|
148 |
|
149 |
## Bundle Integration in MONAI Lable
|
150 |
-
The inference pipleine can be easily used by the MONAI Label server and 3D Slicer for fast labeling T1w MRI images in MNI space.
|
151 |
|
152 |
![](./3DSlicer_use.png) <br>
|
153 |
|
|
|
1 |
# Description
|
2 |
Detailed whole brain segmentation is an essential quantitative technique in medical image analysis, which provides a non-invasive way of measuring brain regions from a clinical acquired structural magnetic resonance imaging (MRI).
|
3 |
+
We provide the pre-trained model for training and inferencing whole brain segmentation with 133 structures.
|
4 |
+
Training pipeline is provided to support active learning in MONAI Label and training with bundle.
|
5 |
|
6 |
A tutorial and release of model for whole brain segmentation using the 3D transformer-based segmentation model UNEST.
|
7 |
|
|
|
21 |
|
22 |
|
23 |
# Model Overview
|
24 |
+
A pre-trained UNEST base model [1] for volumetric (3D) whole brain segmentation with T1w MR images.
|
25 |
To leverage information across embedded sequences, ”shifted window” transformers
|
26 |
are proposed for dense predictions and modeling multi-scale features. However, these
|
27 |
attempts that aim to complicate the self-attention range often yield high computation
|
|
|
91 |
export PYTHONPATH=$PYTHONPATH: '<path to the bundle root dir>/scripts'
|
92 |
```
|
93 |
|
94 |
+
Execute Training:
|
95 |
+
|
96 |
+
```
|
97 |
+
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
|
98 |
+
```
|
99 |
|
100 |
Execute inference:
|
101 |
|
|
|
110 |
Fig.3 - The output prediction comparison with variant and ground truth
|
111 |
</p>
|
112 |
|
113 |
+
## Training/Validation Benchmarking
|
114 |
+
A graph showing the training accuracy for fine-tuning 600 epochs.
|
115 |
+
|
116 |
+
![](./training.png) <br>
|
117 |
+
|
118 |
+
With 10 fine-tuned labels, the training process converges fast.
|
119 |
|
120 |
## Complete ROI of the whole brain segmentation
|
121 |
133 brain structures are segmented.
|
|
|
159 |
|
160 |
|
161 |
## Bundle Integration in MONAI Lable
|
162 |
+
The inference and training pipleine can be easily used by the MONAI Label server and 3D Slicer for fast labeling T1w MRI images in MNI space.
|
163 |
|
164 |
![](./3DSlicer_use.png) <br>
|
165 |
|
docs/training.png
ADDED