monsoon-nlp commited on
Commit
11ef2f5
·
verified ·
1 Parent(s): eb98d8d

Upload 3 files

Browse files
Files changed (3) hide show
  1. config.json +6 -7
  2. configuration_bd3lm.py +47 -0
  3. modeling_bd3lm.py +630 -0
config.json CHANGED
@@ -1,12 +1,11 @@
1
  {
 
2
  "adaln": true,
3
- "architectures": [
4
- "BD3LM"
5
- ],
6
  "attn_backend": "sdpa",
7
  "auto_map": {
8
- "AutoConfig": "kuleshov-group/bd3lm-owt-block_size1024-pretrain--configuration_bd3lm.BD3LMConfig",
9
- "AutoModelForMaskedLM": "kuleshov-group/bd3lm-owt-block_size1024-pretrain--modeling_bd3lm.BD3LM"
10
  },
11
  "block_size": 1024,
12
  "causal": false,
@@ -23,7 +22,7 @@
23
  "sampling_eps_min": 0.001,
24
  "time_conditioning": false,
25
  "torch_dtype": "float32",
26
- "transformers_version": "4.50.0",
27
  "var_min": true,
28
- "vocab_size": 50258
29
  }
 
1
  {
2
+ "_name_or_path": "monsoon-nlp/dna-blockdiff",
3
  "adaln": true,
4
+ "architectures": ["BD3LM"],
 
 
5
  "attn_backend": "sdpa",
6
  "auto_map": {
7
+ "AutoConfig": "monsoon-nlp/dna-blockdiff-2--configuration_bd3lm.BD3LMConfig",
8
+ "AutoModelForMaskedLM": "monsoon-nlp/dna-blockdiff-2--modeling_bd3lm.BD3LM"
9
  },
10
  "block_size": 1024,
11
  "causal": false,
 
22
  "sampling_eps_min": 0.001,
23
  "time_conditioning": false,
24
  "torch_dtype": "float32",
25
+ "transformers_version": "4.49.0",
26
  "var_min": true,
27
+ "vocab_size": 4108
28
  }
configuration_bd3lm.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """BD3LM config for Hugging Face.
2
+
3
+ """
4
+
5
+ import transformers
6
+
7
+
8
+ class BD3LMConfig(transformers.PretrainedConfig):
9
+ """Hugging Face configuration class for BD3LM."""
10
+ model_type = "bd3lm"
11
+
12
+ def __init__(
13
+ self,
14
+ block_size: int = 1,
15
+ vocab_size: int = 4108,
16
+ model_length: int = 1024,
17
+ cross_attn: bool = True,
18
+ adaln: bool = True,
19
+ attn_backend: str = 'flex',
20
+ causal: bool = False,
21
+ hidden_dim: int = 768,
22
+ cond_dim: int = 129,
23
+ n_blocks: int = 12,
24
+ n_heads: int = 12,
25
+ dropout: float = 0.1,
26
+ time_conditioning: bool = False,
27
+ var_min: bool = True,
28
+ sampling_eps_min: float = 1e-3,
29
+ sampling_eps_max: float = 0.999,
30
+ ** kwargs):
31
+ super().__init__(**kwargs)
32
+ self.block_size = block_size
33
+ self.cross_attn = cross_attn
34
+ self.adaln = adaln
35
+ self.attn_backend = attn_backend
36
+ self.causal = causal
37
+ self.vocab_size = vocab_size
38
+ self.model_length = model_length
39
+ self.hidden_dim = hidden_dim
40
+ self.cond_dim = cond_dim
41
+ self.n_blocks = n_blocks
42
+ self.n_heads = n_heads
43
+ self.dropout = dropout
44
+ self.time_conditioning = time_conditioning
45
+ self.var_min = var_min
46
+ self.sampling_eps_min = sampling_eps_min
47
+ self.sampling_eps_max = sampling_eps_max
modeling_bd3lm.py ADDED
@@ -0,0 +1,630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """BD3LM model for Hugging Face.
2
+
3
+ """
4
+ import math
5
+ import typing
6
+
7
+ import einops
8
+ from functools import partial
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ import transformers
13
+ from transformers import modeling_outputs
14
+ try:
15
+ from torch.nn.attention.flex_attention import flex_attention, create_block_mask
16
+ FLEX_ATTN_AVAILABLE = True
17
+ except:
18
+ FLEX_ATTN_AVAILABLE = False
19
+
20
+ from .configuration_bd3lm import BD3LMConfig
21
+
22
+ # Flags required to enable jit fusion kernels
23
+ torch._C._jit_set_profiling_mode(False)
24
+ torch._C._jit_set_profiling_executor(False)
25
+ torch._C._jit_override_can_fuse_on_cpu(True)
26
+ torch._C._jit_override_can_fuse_on_gpu(True)
27
+
28
+ def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
29
+ """
30
+ Constructs the specialized block diffusion attention mask for training
31
+ composed of three masks:
32
+ - **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
33
+ - **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
34
+ - **Block Causal Mask (M_BC)**: Attention to update x0
35
+
36
+ Args:
37
+ b, h: Batch and head indices (ignored for mask logic).
38
+ q_idx, kv_idx: Query and Key indices.
39
+ seq_len: Total sequence length.
40
+ block_size: Defines the block structure.
41
+
42
+ Returns:
43
+ A boolean attention mask.
44
+ """
45
+
46
+ # Indicate whether token belongs to xt or x0
47
+ x0_flag_q = (q_idx >= n)
48
+ x0_flag_kv = (kv_idx >= n)
49
+
50
+ # Compute block indices
51
+ block_q = torch.where(x0_flag_q == 1,
52
+ (q_idx - n) // block_size,
53
+ q_idx // block_size)
54
+ block_kv = torch.where(x0_flag_kv == 1,
55
+ (kv_idx - n) // block_size,
56
+ kv_idx // block_size)
57
+
58
+ # **1. Block Diagonal Mask (M_BD) **
59
+ block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)
60
+
61
+ # **2. Offset Block-Causal Mask (M_OBC) **
62
+ offset_block_causal = (
63
+ (block_q > block_kv)
64
+ & (x0_flag_kv == 1)
65
+ & (x0_flag_q == 0)
66
+ )
67
+
68
+ # **3. Block-Causal Mask (M_BC) **
69
+ block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)
70
+
71
+ # **4. Combine Masks **
72
+ return block_diagonal | offset_block_causal | block_causal
73
+
74
+ @torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
75
+ def fused_flex_attention(q, k, v, mask=None):
76
+ return flex_attention(q, k, v, block_mask=mask)
77
+
78
+ def bias_dropout_add_scale(
79
+ x: torch.Tensor,
80
+ bias: typing.Optional[torch.Tensor],
81
+ scale: torch.Tensor,
82
+ residual: typing.Optional[torch.Tensor],
83
+ prob: float,
84
+ training: bool) -> torch.Tensor:
85
+ if bias is not None:
86
+ out = scale * F.dropout(x + bias, p=prob, training=training)
87
+ else:
88
+ out = scale * F.dropout(x, p=prob, training=training)
89
+
90
+ if residual is not None:
91
+ out = residual + out
92
+ return out
93
+
94
+
95
+ def get_bias_dropout_add_scale(training):
96
+ def _bias_dropout_add(x, bias, scale, residual, prob):
97
+ return bias_dropout_add_scale(
98
+ x, bias, scale, residual, prob, training)
99
+
100
+ return _bias_dropout_add
101
+
102
+
103
+ # function overload
104
+ def modulate(x: torch.Tensor,
105
+ shift: torch.Tensor,
106
+ scale: torch.Tensor) -> torch.Tensor:
107
+ return x * (1 + scale) + shift
108
+
109
+ @torch.jit.script
110
+ def bias_dropout_add_scale_fused_train(
111
+ x: torch.Tensor,
112
+ bias: typing.Optional[torch.Tensor],
113
+ scale: torch.Tensor,
114
+ residual: typing.Optional[torch.Tensor],
115
+ prob: float) -> torch.Tensor:
116
+ return bias_dropout_add_scale(
117
+ x, bias, scale, residual, prob, True)
118
+
119
+ @torch.jit.script
120
+ def bias_dropout_add_scale_fused_inference(
121
+ x: torch.Tensor,
122
+ bias: typing.Optional[torch.Tensor],
123
+ scale: torch.Tensor,
124
+ residual: typing.Optional[torch.Tensor],
125
+ prob: float) -> torch.Tensor:
126
+ return bias_dropout_add_scale(
127
+ x, bias, scale, residual, prob, False)
128
+
129
+ @torch.jit.script
130
+ def modulate_fused(x: torch.Tensor,
131
+ shift: torch.Tensor,
132
+ scale: torch.Tensor) -> torch.Tensor:
133
+ return modulate(x, shift, scale)
134
+
135
+
136
+ class Rotary(torch.nn.Module):
137
+ def __init__(self, dim, base=10_000):
138
+ super().__init__()
139
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
140
+ self.register_buffer('inv_freq', inv_freq)
141
+ self.seq_len_cached = None
142
+ self.cos_cached = None
143
+ self.sin_cached = None
144
+
145
+ def forward(self, x, seq_dim=1):
146
+ seq_len = x.shape[seq_dim]
147
+ if seq_len != self.seq_len_cached:
148
+ self.seq_len_cached = seq_len
149
+ t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
150
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
151
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
152
+ # dims are: batch, seq_len, qkv, head, dim
153
+ self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
154
+ self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
155
+ # This makes the transformation on v an identity.
156
+ self.cos_cached[:,:,2,:,:].fill_(1.)
157
+ self.sin_cached[:,:,2,:,:].fill_(0.)
158
+
159
+ return self.cos_cached, self.sin_cached
160
+
161
+
162
+ def rotate_half(x):
163
+ x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
164
+ return torch.cat((-x2, x1), dim=-1)
165
+
166
+
167
+ def apply_rotary_pos_emb_torchscript(qkv, cos, sin):
168
+ return (qkv * cos) + (rotate_half(qkv) * sin)
169
+
170
+ # function overload
171
+ def modulate(x, shift, scale):
172
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
173
+
174
+
175
+ #################################################################################
176
+ # Layers #
177
+ #################################################################################
178
+ class LayerNorm(nn.Module):
179
+ def __init__(self, dim):
180
+ super().__init__()
181
+ self.weight = nn.Parameter(torch.ones([dim]))
182
+ self.dim = dim
183
+ def forward(self, x):
184
+ with torch.cuda.amp.autocast(enabled=False):
185
+ x = F.layer_norm(x.float(), [self.dim])
186
+ return x * self.weight[None,None,:]
187
+
188
+
189
+ def residual_linear(x, W, x_skip, residual_scale):
190
+ """x_skip + residual_scale * W @ x"""
191
+ dim_out, dim_in = W.shape[0], W.shape[1]
192
+ return torch.addmm(
193
+ x_skip.view(-1, dim_out),
194
+ x.view(-1, dim_in),
195
+ W.T,
196
+ alpha=residual_scale).view(*x.shape[:-1], dim_out)
197
+
198
+
199
+ #################################################################################
200
+ # Embedding Layers for Timesteps and Class Labels #
201
+ #################################################################################
202
+ class TimestepEmbedder(nn.Module):
203
+ """
204
+ Embeds scalar timesteps into vector representations.
205
+ """
206
+ def __init__(self, hidden_size, frequency_embedding_size=256):
207
+ super().__init__()
208
+ self.mlp = nn.Sequential(
209
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True),
210
+ nn.SiLU(),
211
+ nn.Linear(hidden_size, hidden_size, bias=True))
212
+ self.frequency_embedding_size = frequency_embedding_size
213
+
214
+ @staticmethod
215
+ def timestep_embedding(t, dim, max_period=10000):
216
+ """
217
+ Create sinusoidal timestep embeddings.
218
+ :param t: a 1-D Tensor of N indices, one per batch element.
219
+ These may be fractional.
220
+ :param dim: the dimension of the output.
221
+ :param max_period: controls the minimum frequency of the embeddings.
222
+ :return: an (N, D) Tensor of positional embeddings.
223
+ """
224
+ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
225
+ half = dim // 2
226
+ freqs = torch.exp(
227
+ - math.log(max_period)
228
+ * torch.arange(start=0, end=half, dtype=torch.float32)
229
+ / half).to(device=t.device)
230
+ args = t[:, None].float() * freqs[None]
231
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
232
+ if dim % 2:
233
+ embedding = torch.cat(
234
+ [embedding,
235
+ torch.zeros_like(embedding[:, :1])], dim=-1)
236
+ return embedding
237
+
238
+ def forward(self, t):
239
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
240
+ t_emb = self.mlp(t_freq)
241
+ return t_emb
242
+
243
+
244
+ class LabelEmbedder(nn.Module):
245
+ """Embeds class labels into vector representations.
246
+
247
+ Also handles label dropout for classifier-free guidance.
248
+ """
249
+ def __init__(self, num_classes, cond_size):
250
+ super().__init__()
251
+ self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
252
+ self.num_classes = num_classes
253
+
254
+ # TODO think of initializing with 0.02 std deviation like in original DiT paper
255
+
256
+ def forward(self, labels):
257
+ embeddings = self.embedding_table(labels)
258
+ return embeddings
259
+
260
+
261
+ #################################################################################
262
+ # Core Model #
263
+ #################################################################################
264
+
265
+ def regular_attention_multi_headed(qkv):
266
+ # Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim]
267
+ # where the 3 represents Q, K, V packed in that order
268
+ batch_size, seq_len, _, num_heads, head_dim = qkv.shape
269
+ # Separate Q, K, V from the packed qkv tensor
270
+ # [batch_size, seq_len, num_heads, head_dim]
271
+ q = qkv[:, :, 0, :, :]
272
+ k = qkv[:, :, 1, :, :]
273
+ v = qkv[:, :, 2, :, :]
274
+
275
+ # Transpose and reshape Q and K for batched matrix multiplication:
276
+ # [batch_size, num_heads, seq_len, head_dim]
277
+ q = q.transpose(1, 2)
278
+ k = k.transpose(1, 2)
279
+ v = v.transpose(1, 2)
280
+
281
+ # Compute scaled dot-product attention
282
+ # [batch_size, num_heads, seq_len, seq_len]
283
+ attention_scores = torch.matmul(
284
+ q, k.transpose(-2, -1)) / math.sqrt(head_dim)
285
+
286
+ # Apply softmax to calculate the attention weights
287
+ attention_probs = F.softmax(attention_scores, dim=-1)
288
+
289
+ # [batch_size, num_heads, seq_len, head_dim]
290
+ attention_output = torch.matmul(attention_probs, v)
291
+
292
+ # [batch_size, seq_len, num_heads, head_dim]
293
+ attention_output = attention_output.transpose(1, 2)
294
+ return einops.rearrange(attention_output,
295
+ 'b s h d -> b s (h d)')
296
+
297
+
298
+ class DDiTBlock(nn.Module):
299
+ def __init__(self, n, block_size, dim, n_heads, cond_dim, causal=False,
300
+ mlp_ratio=4, dropout=0.1, adaln=True, attn_backend='sdpa'):
301
+ super().__init__()
302
+ self.n = n
303
+ self.block_size = block_size
304
+ self.n_heads = n_heads
305
+ self.attn_backend = attn_backend
306
+ self.kv_cache = None
307
+ self.causal = causal
308
+
309
+ self.norm1 = LayerNorm(dim)
310
+ self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
311
+ self.attn_out = nn.Linear(dim, dim, bias=False)
312
+ self.dropout1 = nn.Dropout(dropout)
313
+
314
+ self.norm2 = LayerNorm(dim)
315
+ self.mlp = nn.Sequential(
316
+ nn.Linear(dim, mlp_ratio * dim, bias=True),
317
+ nn.GELU(approximate='tanh'),
318
+ nn.Linear(mlp_ratio * dim, dim, bias=True))
319
+ self.dropout2 = nn.Dropout(dropout)
320
+ self.dropout = dropout
321
+ self.adaln = adaln
322
+ if self.adaln:
323
+ self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
324
+ self.adaLN_modulation.weight.data.zero_()
325
+ self.adaLN_modulation.bias.data.zero_()
326
+
327
+ def _get_bias_dropout_scale(self):
328
+ if self.training:
329
+ return bias_dropout_add_scale_fused_train
330
+ else:
331
+ return bias_dropout_add_scale_fused_inference
332
+
333
+ def get_qkv(self, x, rotary_cos_sin, store_kv=False):
334
+ # compute qkv (potentially use cache)
335
+ if self.kv_cache is not None:
336
+ new_qkv = self.attn_qkv(x[:, -self.block_size:])
337
+ qkv = torch.cat((self.kv_cache, new_qkv), dim=1)
338
+ else:
339
+ qkv = self.attn_qkv(x)
340
+ # store kv cache in a sliding window (can't exceed context len)
341
+ if store_kv:
342
+ self.kv_cache = qkv[:, -(self.n-self.block_size):]
343
+
344
+ qkv = einops.rearrange(
345
+ qkv,
346
+ 'b s (three h d) -> b s three h d',
347
+ three=3,
348
+ h=self.n_heads)
349
+ with torch.cuda.amp.autocast(enabled=False):
350
+ cos, sin = rotary_cos_sin
351
+ qkv = apply_rotary_pos_emb_torchscript(
352
+ qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
353
+ return qkv
354
+
355
+ def cross_attn(self, x, qkv, mask=None):
356
+ scale = qkv.shape[-1]
357
+ qkv = qkv.transpose(1, 3)
358
+ mask = mask.bool() if mask is not None else None
359
+ x = F.scaled_dot_product_attention(
360
+ query=qkv[:, :, 0],
361
+ key=qkv[:, :, 1],
362
+ value=qkv[:, :, 2],
363
+ attn_mask=mask,
364
+ is_causal=self.causal,
365
+ scale=1 / math.sqrt(scale))
366
+ x = x.transpose(1, 2)
367
+ x = einops.rearrange(x, 'b s h d -> b s (h d)')
368
+ return x
369
+
370
+ def cross_attn_flex(self, qkv, mask=None):
371
+ qkv = einops.rearrange(qkv, 'b s three h d -> b h three s d', h=self.n_heads)
372
+ x = fused_flex_attention(
373
+ qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], mask=mask)
374
+ x = einops.rearrange(x, 'b h s d -> b s (h d)')
375
+ return x
376
+
377
+ def forward(self, x, rotary_cos_sin, c, mask=None,
378
+ sample_mode=False, store_kv=False):
379
+ bias_dropout_scale_fn = self._get_bias_dropout_scale()
380
+
381
+ if self.adaln:
382
+ (shift_msa, scale_msa, gate_msa, shift_mlp,
383
+ scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
384
+
385
+ # attention operation
386
+ x_skip = x
387
+ if self.adaln:
388
+ x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
389
+ else:
390
+ x = self.norm1(x)
391
+
392
+ # get qkvs
393
+ if mask is not None and not sample_mode:
394
+ n = mask.shape[-1] // 2
395
+ qkv_x = self.get_qkv(x[:,:n], rotary_cos_sin)
396
+ qkv_x0 = self.get_qkv(x[:,n:], rotary_cos_sin)
397
+ qkv = torch.cat((qkv_x, qkv_x0), dim=1)
398
+ else:
399
+ qkv = self.get_qkv(x, rotary_cos_sin, store_kv=store_kv)
400
+
401
+ if self.attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
402
+ x = self.cross_attn_flex(qkv, mask=mask)
403
+ elif self.attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
404
+ x = self.cross_attn(x, qkv, mask=mask)
405
+ else:
406
+ raise ValueError('Unknown attention backend')
407
+
408
+ # mlp operation
409
+ if self.adaln:
410
+ x = bias_dropout_scale_fn(self.attn_out(x),
411
+ None,
412
+ gate_msa,
413
+ x_skip,
414
+ self.dropout)
415
+ x = bias_dropout_scale_fn(
416
+ self.mlp(modulate_fused(
417
+ self.norm2(x), shift_mlp, scale_mlp)),
418
+ None, gate_mlp, x, self.dropout)
419
+ else:
420
+ x = bias_dropout_scale_fn(self.attn_out(x),
421
+ None, torch.ones_like(x), x_skip, self.dropout)
422
+ x = bias_dropout_scale_fn(
423
+ self.mlp(self.norm2(x)),
424
+ None, torch.ones_like(x), x, self.dropout)
425
+ return x
426
+
427
+
428
+ class EmbeddingLayer(nn.Module):
429
+ def __init__(self, dim, vocab_dim):
430
+ super().__init__()
431
+ self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
432
+ torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
433
+
434
+ def forward(self, x):
435
+ return self.embedding[x]
436
+
437
+
438
+ class DDitFinalLayer(nn.Module):
439
+ def __init__(self, hidden_size, out_channels, cond_dim, adaln=True):
440
+ super().__init__()
441
+ self.norm_final = LayerNorm(hidden_size)
442
+ self.linear = nn.Linear(hidden_size, out_channels)
443
+ self.linear.weight.data.zero_()
444
+ self.linear.bias.data.zero_()
445
+
446
+ self.adaln = adaln
447
+ if self.adaln:
448
+ self.adaLN_modulation = nn.Linear(cond_dim,
449
+ 2 * hidden_size,
450
+ bias=True)
451
+ self.adaLN_modulation.weight.data.zero_()
452
+ self.adaLN_modulation.bias.data.zero_()
453
+
454
+
455
+ def forward(self, x, c):
456
+ if self.adaln:
457
+ shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
458
+ x = modulate_fused(self.norm_final(x), shift, scale)
459
+ else:
460
+ x = self.norm_final(x)
461
+ x = self.linear(x)
462
+ return x
463
+
464
+
465
+ class DITBackbone(nn.Module):
466
+ def __init__(
467
+ self,
468
+ config: BD3LMConfig):
469
+ super().__init__()
470
+
471
+ self.config = config
472
+ self.cross_attn = config.cross_attn
473
+ self.block_size = config.block_size
474
+ self.vocab_size = config.vocab_size
475
+ self.n = config.model_length
476
+
477
+ self.vocab_embed = EmbeddingLayer(
478
+ config.hidden_dim,
479
+ config.vocab_size)
480
+ self.adaln = config.adaln
481
+ if self.adaln:
482
+ self.sigma_map = TimestepEmbedder(
483
+ config.cond_dim)
484
+ self.rotary_emb = Rotary(
485
+ config.hidden_dim // config.n_heads)
486
+
487
+ blocks = []
488
+ for _ in range(config.n_blocks):
489
+ blocks.append(DDiTBlock(self.n,
490
+ self.block_size,
491
+ config.hidden_dim,
492
+ config.n_heads,
493
+ config.cond_dim,
494
+ causal=config.causal,
495
+ dropout=config.dropout,
496
+ adaln=config.adaln,
497
+ attn_backend=config.attn_backend,))
498
+ self.blocks = nn.ModuleList(blocks)
499
+
500
+ self.output_layer = DDitFinalLayer(
501
+ config.hidden_dim,
502
+ config.vocab_size,
503
+ config.cond_dim,
504
+ adaln=config.adaln)
505
+ if self.cross_attn:
506
+ self.gen_mask(config.model_length, self.block_size, attn_backend=config.attn_backend)
507
+ self.precision = torch.float32
508
+
509
+ def _get_bias_dropout_scale(self):
510
+ if self.training:
511
+ return bias_dropout_add_scale_fused_train
512
+ else:
513
+ return bias_dropout_add_scale_fused_inference
514
+
515
+ def gen_mask(self, seqlen, block_size, attn_backend='sdpa'):
516
+ """Genererates attention mask"""
517
+ if attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
518
+ self.mask = create_block_mask(
519
+ partial(block_diff_mask, block_size=block_size, n=seqlen),
520
+ B=None, H=None, Q_LEN=seqlen*2, KV_LEN=seqlen*2)
521
+ elif attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
522
+ self.mask = block_diff_mask(
523
+ b=None, h=None, q_idx=torch.arange(seqlen*2)[:, None],
524
+ kv_idx=torch.arange(seqlen*2)[None, :], block_size=block_size, n=seqlen)
525
+ else:
526
+ raise ValueError('Unknown attention backend')
527
+
528
+ def forward(self, indices, sigma, sample_mode=False,
529
+ store_kv=False, output_hidden_states=False):
530
+ if not self.config.time_conditioning and self.adaln:
531
+ sigma = torch.zeros_like(sigma)
532
+ all_hidden_states = []
533
+ x = self.vocab_embed(indices)
534
+ if output_hidden_states:
535
+ all_hidden_states.append(x)
536
+ c = None
537
+ if self.adaln:
538
+ c = F.silu(self.sigma_map(sigma))
539
+ if self.cross_attn:
540
+ n = self.mask.shape[-1] // 2
541
+ rotary_cos_sin = self.rotary_emb(x[:, :n])
542
+ mask = self.mask.to(x.device)
543
+ # use block-causal mask only during sampling
544
+ if sample_mode:
545
+ mask = mask[
546
+ n:n+x.shape[1], n:n+x.shape[1]]
547
+ else:
548
+ mask = None
549
+ rotary_cos_sin = self.rotary_emb(x)
550
+
551
+ with torch.cuda.amp.autocast(dtype=self.precision):
552
+ for i in range(len(self.blocks)):
553
+ x = self.blocks[i](x,
554
+ rotary_cos_sin,
555
+ c,
556
+ mask=mask,
557
+ sample_mode=sample_mode,
558
+ store_kv=store_kv)
559
+ if output_hidden_states:
560
+ all_hidden_states.append(x)
561
+ logits = self.output_layer(x, c)
562
+ if self.cross_attn and not sample_mode:
563
+ logits = logits[:, :n]
564
+ all_hidden_states = [hidden_states[:, :n] for hidden_states in all_hidden_states]
565
+ return logits, all_hidden_states
566
+
567
+ class BD3LM(transformers.PreTrainedModel):
568
+ """HF-compatible model."""
569
+ config_class = BD3LMConfig
570
+ base_model_prefix = "bd3lm"
571
+
572
+ def __init__(
573
+ self,
574
+ config: BD3LMConfig):
575
+ super().__init__(config)
576
+ self.config = config
577
+ self.backbone = DITBackbone(config)
578
+ if config.var_min:
579
+ self.register_buffer(
580
+ 'sampling_eps_min',
581
+ torch.tensor(config.sampling_eps_min))
582
+ self.register_buffer(
583
+ 'sampling_eps_max',
584
+ torch.tensor(config.sampling_eps_max))
585
+
586
+ def reset_kv_cache(self):
587
+ for block in self.backbone.blocks:
588
+ block.kv_cache = None
589
+
590
+ def forward(
591
+ self,
592
+ input_ids: torch.LongTensor = None,
593
+ timesteps: torch.FloatTensor = None,
594
+ sample_mode: typing.Optional[bool] = None,
595
+ store_kv: typing.Optional[bool] = None,
596
+ output_hidden_states: typing.Optional[bool] = None,
597
+ return_dict: typing.Optional[bool] = None,
598
+ ) -> typing.Union[
599
+ torch.Tensor, typing.Tuple,
600
+ modeling_outputs.MaskedLMOutput]:
601
+ """HF-compatible forward method."""
602
+ if sample_mode:
603
+ assert self.config.attn_backend == 'sdpa', 'Sampling only supported with SDPA'
604
+
605
+ output_hidden_states = (
606
+ output_hidden_states
607
+ if output_hidden_states is not None
608
+ else self.config.output_hidden_states
609
+ )
610
+ return_dict = return_dict \
611
+ if return_dict is not None \
612
+ else self.config.use_return_dict
613
+
614
+ logits, all_hidden_states = self.backbone(
615
+ indices=input_ids,
616
+ sigma=timesteps,
617
+ sample_mode=sample_mode,
618
+ store_kv=store_kv,
619
+ output_hidden_states=output_hidden_states,
620
+ )
621
+ if return_dict:
622
+ return modeling_outputs.MaskedLMOutput(
623
+ logits=logits,
624
+ hidden_states=all_hidden_states if output_hidden_states else None,
625
+ loss=None
626
+ )
627
+ elif output_hidden_states:
628
+ return logits, all_hidden_states
629
+ else:
630
+ return logits