File size: 3,063 Bytes
05e840d
ffbc5c2
 
 
 
 
 
 
 
c8220ef
 
ffbc5c2
 
 
 
6f2de89
05e840d
6f2de89
 
 
05e840d
6f2de89
05e840d
6f2de89
05e840d
6f2de89
05e840d
6f2de89
 
05e840d
6f2de89
05e840d
6f2de89
 
 
 
 
05e840d
6f2de89
05e840d
6f2de89
05e840d
6f2de89
 
 
 
 
 
05e840d
6f2de89
05e840d
6f2de89
 
 
 
 
05e840d
6f2de89
05e840d
6f2de89
05e840d
6f2de89
 
05e840d
6f2de89
 
 
05e840d
6f2de89
 
 
 
 
 
05e840d
6f2de89
05e840d
6f2de89
05e840d
6f2de89
05e840d
6f2de89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

---
library_name: peft
tags:
- nlp
- code
- instruct
- llama
datasets:
- HuggingFaceH4/no_robots
base_model: google/gemma-2-2b-it
license: apache-2.0
---


# monsterapi/gemma-2-2b-norobots

**Base Model for Fine-tuning:** [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it)  
**Service Used:** [MonsterAPI](https://monsterapi.ai)  
**License:** Apache-2.0  

## Overview

`monsterapi/gemma-2-2b-norobots` is a fine-tuned language model designed to improve instruction-following capabilities. The model was trained using the "No Robots" dataset, a high-quality set of 10,000 instructions and demonstrations curated by expert human annotators. This fine-tuning process enhances the base model's performance in understanding and executing single-turn instructions, similar to the goals outlined in OpenAI's InstructGPT.

### Dataset Details

**Dataset Summary:**  
The "No Robots" dataset is a collection of 10,000 high-quality instructions and demonstrations created by skilled human annotators. The dataset is modeled after the instruction dataset described in OpenAI's InstructGPT paper. It mainly includes single-turn instructions across various categories, aiming to improve the instruction-following capabilities of language models during supervised fine-tuning (SFT).

## Fine-tuning Details

**Fine-tuned Model Name:** `monsterapi/gemma-2-2b-norobots`  
**Training Time:** 31 minutes  
**Cost:** $1.10  
**Epochs:** 1  
**Gradient Accumulation Steps:** 32  

The model was fine-tuned using MonsterAPI's finetuning service, optimizing the base model `google/gemma-2-2b-it` to perform better on instruction-following tasks. 

## Hyperparameters & Additional Details

- **Base Model:** `google/gemma-2-2b-it`
- **Dataset:** No Robots (10,000 instructions and demonstrations)
- **Training Duration:** 31 minutes
- **Cost per Epoch:** $1.10
- **Total Finetuning Cost:** $1.10
- **Gradient Accumulation Steps:** 32

## Use Cases

This model is well-suited for tasks that require improved instruction-following capabilities, such as:
- Chatbots and virtual assistants
- Content creation tools
- Automated customer support systems
- Task automation in various industries

## How to Use

You can load the model directly using the Hugging Face Transformers library:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "monsterapi/gemma-2-2b-norobots"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Example usage
input_text = "Explain the concept of supervised fine-tuning in simple terms."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Acknowledgements

The fine-tuning process was carried out using MonsterAPI's finetuning service, which offers a seamless experience for optimizing large language models.

## Contact

For further details or queries, please contact [MonsterAPI](https://monsterapi.ai) or visit the official documentation.