PEFT
code
instruct
llama2
souvik0306 commited on
Commit
712c1e5
·
1 Parent(s): 95a4c95

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -21
README.md CHANGED
@@ -3,49 +3,41 @@ library_name: peft
3
  tags:
4
  - code
5
  - instruct
6
- - gpt2
7
  datasets:
8
- - HuggingFaceH4/no_robots
9
- base_model: gpt2
10
  license: apache-2.0
11
  ---
12
 
13
  ### Finetuning Overview:
14
 
15
- **Model Used:** gpt2
16
 
17
- **Dataset:** HuggingFaceH4/no_robots
18
 
19
  #### Dataset Insights:
20
 
21
- [No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.
22
 
23
  #### Finetuning Details:
24
 
25
- With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:
26
 
27
  - Was achieved with great cost-effectiveness.
28
- - Completed in a total duration of 3mins 40s for 1 epoch using an A6000 48GB GPU.
29
- - Costed `$0.101` for the entire epoch.
30
 
31
  #### Hyperparameters & Additional Details:
32
 
33
  - **Epochs:** 1
34
- - **Cost Per Epoch:** $0.101
35
- - **Total Finetuning Cost:** $0.101
36
- - **Model Path:** gpt2
37
  - **Learning Rate:** 0.0002
38
  - **Data Split:** 100% train
39
- - **Gradient Accumulation Steps:** 4
40
  - **lora r:** 32
41
  - **lora alpha:** 64
42
 
43
- #### Prompt Structure
44
- ```
45
- <|system|> <|endoftext|> <|user|> [USER PROMPT]<|endoftext|> <|assistant|> [ASSISTANT ANSWER] <|endoftext|>
46
- ```
47
- #### Training loss :
48
-
49
- ![training loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/9bgb518kFwtDsFtrHzmTu.png)
50
-
51
  license: apache-2.0
 
3
  tags:
4
  - code
5
  - instruct
6
+ - llama2
7
  datasets:
8
+ - cognitivecomputations/dolphin-coder
9
+ base_model: meta-llama/Llama-2-7b-hf
10
  license: apache-2.0
11
  ---
12
 
13
  ### Finetuning Overview:
14
 
15
+ **Model Used:** meta-llama/Llama-2-7b-hf
16
 
17
+ **Dataset:** cognitivecomputations/dolphin-coder
18
 
19
  #### Dataset Insights:
20
 
21
+ [Dolphin-Coder](https://huggingface.co/datasets/cognitivecomputations/dolphin-coder) Dolphin-Coder dataset – a high-quality collection of 100,000+ coding questions and responses. It's perfect for supervised fine-tuning (SFT), and teaching language models to improve on coding-based tasks.
22
 
23
  #### Finetuning Details:
24
 
25
+ With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:
26
 
27
  - Was achieved with great cost-effectiveness.
28
+ - Completed in a total duration of 15hr 31mins for 1 epochs using an A6000 48GB GPU.
29
+ - Costed `$31.31` for the entire 1 epoch.
30
 
31
  #### Hyperparameters & Additional Details:
32
 
33
  - **Epochs:** 1
34
+ - **Total Finetuning Cost:** $31.31
35
+ - **Model Path:** meta-llama/Llama-2-7b-hf
 
36
  - **Learning Rate:** 0.0002
37
  - **Data Split:** 100% train
38
+ - **Gradient Accumulation Steps:** 128
39
  - **lora r:** 32
40
  - **lora alpha:** 64
41
 
42
+ ---
 
 
 
 
 
 
 
43
  license: apache-2.0