--- library_name: peft tags: - code - instruct - llama2 datasets: - cognitivecomputations/dolphin-coder base_model: meta-llama/Llama-2-7b-hf license: apache-2.0 --- ### Finetuning Overview: **Model Used:** meta-llama/Llama-2-7b-hf **Dataset:** cognitivecomputations/dolphin-coder #### Dataset Insights: [Dolphin-Coder](https://huggingface.co/datasets/cognitivecomputations/dolphin-coder) Dolphin-Coder dataset – a high-quality collection of 100,000+ coding questions and responses. It's perfect for supervised fine-tuning (SFT), and teaching language models to improve on coding-based tasks. #### Finetuning Details: With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning: - Was achieved with great cost-effectiveness. - Completed in a total duration of 15hr 31mins for 1 epochs using an A6000 48GB GPU. - Costed `$30.64` for the entire 1 epoch. #### Hyperparameters & Additional Details: - **Epochs:** 1 - **Total Finetuning Cost:** $30.64 - **Model Path:** meta-llama/Llama-2-7b-hf - **Learning Rate:** 0.0002 - **Data Split:** 100% train - **Gradient Accumulation Steps:** 128 - **lora r:** 32 - **lora alpha:** 64 --- license: apache-2.0