File size: 1,649 Bytes
a975ad3 cbb2ebe a975ad3 cbb2ebe a975ad3 cbb2ebe a975ad3 cbb2ebe ed12da2 cbb2ebe 577f9d5 cbb2ebe e5d36e3 577f9d5 e5d36e3 577f9d5 cbb2ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
library_name: peft
tags:
- meta-llama
- code
- instruct
- WizardLM
- Mistral-7B-v0.1
datasets:
- WizardLM/WizardLM_evol_instruct_70k
base_model: mistralai/Mistral-7B-v0.1
license: apache-2.0
---
### Finetuning Overview:
**Model Used:** mistralai/Mistral-7B-v0.1
**Dataset:** WizardLM/WizardLM_evol_instruct_70k
#### Dataset Insights:
The WizardLM/WizardLM_evol_instruct_70k dataset, tailored specifically for enhancing interactive capabilities, it was developed using EVOL-Instruct method.Which will basically enhance a smaller dataset, with tougher quesitons for the LLM to perform
#### Finetuning Details:
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:
- Was achieved with great cost-effectiveness.
- Completed in a total duration of 5hrs 18mins for 1 epoch using an A6000 48GB GPU.
- Costed `$10` for the entire epoch.
#### Hyperparameters & Additional Details:
- **Epochs:** 1
- **Cost Per Epoch:** $10
- **Total Finetuning Cost:** $10
- **Model Path:** mistralai/Mistral-7B-v0.1
- **Learning Rate:** 0.0002
- **Data Split:** 90% train 10% validation
- **Gradient Accumulation Steps:** 4
---
Prompt Structure
```
### INSTRUCTION:
[instruction]
### RESPONSE:
[output]
```
Training loss :
![training loss](train-loss.png "Training loss")
---
#### Benchmark Results
![ARC HELLSWAG TRUTHFULMQ Benchmark comparison](./updated_title_performance_comparison_bar_plot.png)
```
ARC (arc_challenge, acc_norm) 0.5543
HellaSwag (hellaswag, acc_norm) 0.7979
TruthfulQA (truthfulqa_mc2) 0.4781
```
license: apache-2.0
|