--- library_name: peft tags: - meta-llama - code - instruct - WizardLM - Mistral-7B-v0.1 datasets: - WizardLM/WizardLM_evol_instruct_70k base_model: HuggingFaceH4/zephyr-7b-alpha license: apache-2.0 --- ### Finetuning Overview: **Model Used:** HuggingFaceH4/zephyr-7b-alpha **Dataset:** WizardLM/WizardLM_evol_instruct_70k #### Dataset Insights: The WizardLM/WizardLM_evol_instruct_70k dataset, tailored specifically for enhancing interactive capabilities, was developed using the EVOL-Instruct method. This method enhances a smaller dataset with tougher questions for the LLM to perform. #### Finetuning Details: With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning: - Was achieved with great cost-effectiveness. - Completed in a total duration of 5hrs 18mins for 1 epoch using an A6000 48GB GPU. - Costed `$10` for the entire epoch. #### Hyperparameters & Additional Details: - **Epochs:** 1 - **Cost Per Epoch:** $10.5 - **Total Finetuning Cost:** $10.5 - **Model Path:** HuggingFaceH4/zephyr-7b-alpha - **Learning Rate:** 0.0002 - **Data Split:** 90% train 10% validation - **Gradient Accumulation Steps:** 4 --- ``` ### INSTRUCTION: [instruction] ### RESPONSE: [output] ``` Training loss : ![training loss](train-loss.png "Training loss") --- license: apache-2.0