File size: 1,465 Bytes
56a9c51
 
 
d3d17e6
b6fd44b
 
 
 
 
 
 
 
 
 
 
 
d3d17e6
c8dd642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
license: llama2
---

* indo-instruct-llama2-32kmodel card
* Model Details
* Developed by: monuminu
* Backbone Model: LLaMA-2
* Language(s): English
* Library: HuggingFace Transformers
* License: Fine-tuned checkpoints is licensed under the Non-Commercial Creative Commons license (CC BY-NC-4.0)
* Where to send comments: Instructions on how to provide feedback or comments on a model can be found by opening an issue in the Hugging Face community's model repository
* Contact: For questions and comments about the model
* Dataset Details
* Used Datasets
* alpaca dataset

```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

tokenizer = AutoTokenizer.from_pretrained("monuminu/indo-instruct-llama2-32k")
model = AutoModelForCausalLM.from_pretrained(
    "monuminu/indo-instruct-llama2-32k",
    device_map="auto",
    torch_dtype=torch.float16,
    load_in_8bit=True,
    rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
)

prompt = "### User:\nThomas is healthy, but he has to go to the hospital. What could be the reasons?\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
del inputs["token_type_ids"]
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
```