--- license: llama2 --- * indo-instruct-llama2-32kmodel card * Model Details * Developed by: monuminu * Backbone Model: LLaMA-2 * Language(s): English * Library: HuggingFace Transformers * License: Fine-tuned checkpoints is licensed under the Non-Commercial Creative Commons license (CC BY-NC-4.0) * Where to send comments: Instructions on how to provide feedback or comments on a model can be found by opening an issue in the Hugging Face community's model repository * Contact: For questions and comments about the model * Dataset Details * Used Datasets * alpaca dataset ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer tokenizer = AutoTokenizer.from_pretrained("monuminu/indo-instruct-llama2-32k") model = AutoModelForCausalLM.from_pretrained( "monuminu/indo-instruct-llama2-32k", device_map="auto", torch_dtype=torch.float16, load_in_8bit=True, rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs ) prompt = "### User:\nThomas is healthy, but he has to go to the hospital. What could be the reasons?\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) del inputs["token_type_ids"] streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf')) output_text = tokenizer.decode(output[0], skip_special_tokens=True) ```