File size: 49,029 Bytes
db188c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
"""
modeling_prismatic.py

Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions.
Inherits from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained,
but exactly replicate the logic in `prismatic.models.vlms.prismatic.py`.
"""

import logging
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union

import numpy as np
import timm
import tokenizers
import torch
import torch.nn as nn
import transformers
from timm.models.vision_transformer import LayerScale
from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import ModelOutput

from prismatic.training.train_utils import (
    get_current_action_mask,
    get_next_actions_mask,
)
from prismatic.vla.constants import (
    ACTION_DIM,
    ACTION_PROPRIO_NORMALIZATION_TYPE,
    ACTION_TOKEN_BEGIN_IDX,
    IGNORE_INDEX,
    NUM_ACTIONS_CHUNK,
    STOP_INDEX,
    NormalizationType,
)

from .configuration_prismatic import OpenVLAConfig, PrismaticConfig

# Set up logger
logger = logging.getLogger(__name__)


# === Utility Functions for Monkey-Patching ===
def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
    def wrapper(*args: Any, **kwargs: Any) -> Any:
        result = fn(*args, **kwargs)
        return result[0] if isinstance(result, tuple) else result

    return wrapper


# HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
#   =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
#   =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
    return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor


def ls_apply_patch(ls_module: LayerScale):
    ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
    ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
    del ls_module.gamma


# === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
class PrismaticVisionBackbone(nn.Module):
    """
    Vision backbone for Prismatic models that handles image feature extraction.

    Supports both single backbone (e.g., SigLIP) and fused backbone (e.g., SigLIP + DINOv2) configurations.
    For fused backbones, features from both models are concatenated along the feature dimension.
    """

    def __init__(
        self,
        use_fused_vision_backbone: bool,
        image_sizes: List[int],
        timm_model_ids: List[str],
        timm_override_act_layers: List[Optional[str]],
    ) -> None:
        """
        Initialize the vision backbone.

        Args:
            use_fused_vision_backbone: Whether to use two backbones and fuse their features
            image_sizes: List of image sizes for each backbone
            timm_model_ids: List of TIMM model IDs to use for each backbone
            timm_override_act_layers: List of activation layer overrides for each backbone
        """
        super().__init__()
        self.use_fused_vision_backbone = use_fused_vision_backbone
        self.num_images_in_input = 1  # Default value, can be overridden later

        # Validate number of (fused) vision backbones
        if len(timm_model_ids) > 2:
            raise ValueError("Prismatic models only support up to 2 (fused) vision backbones!")

        # Create primary featurizer
        self.featurizer = self._create_featurizer(
            model_id=timm_model_ids[0], img_size=image_sizes[0], act_layer=timm_override_act_layers[0]
        )
        self.embed_dim = self.featurizer.embed_dim

        # Create secondary featurizer if using fused backbone
        if self.use_fused_vision_backbone:
            self.fused_featurizer = self._create_featurizer(
                model_id=timm_model_ids[1], img_size=image_sizes[1], act_layer=timm_override_act_layers[1]
            )
            self.embed_dim += self.fused_featurizer.embed_dim

        # Patch LayerScale modules for HF compatibility
        self._patch_layer_scales()

    def _create_featurizer(self, model_id: str, img_size: int, act_layer: Optional[str]) -> nn.Module:
        """
        Create a TIMM-based featurizer model with appropriate configurations.

        Args:
            model_id: The TIMM model ID to load
            img_size: Input image size for the model
            act_layer: Override for the activation layer type

        Returns:
            A configured featurizer model
        """
        featurizer = timm.create_model(
            model_id,
            pretrained=False,
            num_classes=0,
            img_size=img_size,
            act_layer=act_layer,
        )

        # Monkey-patch the forward function to extract the second-to-last layer features
        num_blocks = len(featurizer.blocks)
        featurizer.forward = unpack_tuple(partial(featurizer.get_intermediate_layers, n={num_blocks - 2}))

        return featurizer

    def _patch_layer_scales(self) -> None:
        """
        Patch all LayerScale modules to be compatible with HF's parameter naming.

        HF Transformers overwrites parameters with names containing 'gamma',
        so we need to rename and modify the forward method.
        """
        # Patch primary featurizer
        for module in self.featurizer.modules():
            if isinstance(module, LayerScale):
                ls_apply_patch(module)

        # Patch secondary featurizer if it exists
        if self.use_fused_vision_backbone:
            for module in self.fused_featurizer.modules():
                if isinstance(module, LayerScale):
                    ls_apply_patch(module)

    def get_num_patches(self) -> int:
        """
        Returns the number of vision patches output by the vision backbone.

        Returns:
            Number of patches per image
        """
        return self.featurizer.patch_embed.num_patches

    def get_num_images_in_input(self) -> int:
        """
        Returns the number of input images for the vision backbone.

        Returns:
            Number of images expected in the input
        """
        return self.num_images_in_input

    def set_num_images_in_input(self, num_images_in_input: int) -> None:
        """
        Sets the number of input images for the vision backbone.

        Args:
            num_images_in_input: Number of images to expect in the input
        """
        self.num_images_in_input = num_images_in_input

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        """
        Implements the forward pass for the vision backbone.

        If `self.use_fused_vision_backbone == True`, uses both SigLIP and DINOv2 transformers to extract visual features
        (otherwise uses SigLIP only). Allows multi-image inputs (but only for fused vision backbone).

        Args:
            pixel_values (torch.Tensor): Pixels for input image(s), (B, C, H, W).
        """
        if self.num_images_in_input == 1:
            if not self.use_fused_vision_backbone:
                return self.featurizer(pixel_values)

            # Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
            img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
            patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)

            return torch.cat([patches, patches_fused], dim=2)

        else:
            assert self.use_fused_vision_backbone, "Multi-image inputs require using fused backbone!"

            # Split `pixel_values` into individual images (each with 6 channels: 3 for SigLIP + 3 for DINOv2)
            images = torch.split(pixel_values, [6] * self.num_images_in_input, dim=1)

            # Process each image and collect patches
            all_patches = []
            for img in images:
                # Split each image further into two stacks of channels (each with 3 channels)
                img_regular, img_fused = torch.split(img, [3, 3], dim=1)

                # Get patches from both SigLIP and DINOv2 vision transformers
                patches = self.featurizer(img_regular)
                patches_fused = self.fused_featurizer(img_fused)

                # Concatenate SigLIP and DINOv2 patches along the hidden dimension
                combined_patches = torch.cat([patches, patches_fused], dim=2)
                all_patches.append(combined_patches)

            # Concatenate all patches along the patch dimension
            return torch.cat(all_patches, dim=1)


# === Prismatic Projector (nn.Module) Definitions ===
class PrismaticProjector(nn.Module):
    def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
        super().__init__()
        self.use_fused_vision_backbone = use_fused_vision_backbone
        self.vision_dim, self.llm_dim = vision_dim, llm_dim

        # Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
        if not self.use_fused_vision_backbone:
            self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
            self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
            self.act_fn1 = nn.GELU()
        else:
            initial_projection_dim = 4 * vision_dim
            self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
            self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
            self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
            self.act_fn1 = nn.GELU()
            self.act_fn2 = nn.GELU()

    def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
        if not self.use_fused_vision_backbone:
            projected_features = self.fc1(img_patches)
            projected_features = self.act_fn1(projected_features)
            projected_features = self.fc2(projected_features)
        else:
            projected_features = self.fc1(img_patches)
            projected_features = self.act_fn1(projected_features)
            projected_features = self.fc2(projected_features)
            projected_features = self.act_fn2(projected_features)
            projected_features = self.fc3(projected_features)

        return projected_features


# === Main HF Class Definitions ===
@dataclass
class PrismaticCausalLMOutputWithPast(ModelOutput):
    """Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None

    # Additions for VLMs
    projector_features: Optional[torch.FloatTensor] = None


class PrismaticPreTrainedModel(PreTrainedModel):
    config_class: PretrainedConfig = PrismaticConfig
    base_model_prefix: str = "model"
    supports_gradient_checkpointing: bool = True

    _no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
    _skip_keys_device_placement: str = "past_key_values"
    _supports_flash_attn_2: bool = True

    def _init_weights(self, module: nn.Module) -> None:
        # Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
        #   => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
        #      https://github.com/TRI-ML/prismatic-vlms
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def _supports_sdpa(self) -> bool:
        """Check LLM supports SDPA Attention"""
        return self.language_model._supports_sdpa


class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
    def __init__(self, config: PrismaticConfig) -> None:
        super().__init__(config)

        # [Validation] Lightweight Validate on `config` Fields + Dependency Versions
        if config.use_fused_vision_backbone is None:
            raise ValueError("Missing config field `use_fused_vision_backbone`")

        if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
            raise NotImplementedError(
                "TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
                "if you urgently need support for latest TIMM versions."
            )

        if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
            logger.warning(
                f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
                f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
                f"there might be inference-time regressions due to dependency changes. If in doubt, please"
                f"use the above versions."
            )

        # Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
        self.vision_backbone = PrismaticVisionBackbone(
            config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
        )

        # Create Multimodal Projector
        self.projector = PrismaticProjector(
            config.use_fused_vision_backbone,
            vision_dim=self.vision_backbone.embed_dim,
            llm_dim=config.text_config.hidden_size,
        )

        # Instantiate LLM Backbone
        self.language_model = AutoModelForCausalLM.from_config(
            config.text_config, attn_implementation=config._attn_implementation
        )
        self.vocab_size = config.text_config.vocab_size
        self.pad_token_id = config.pad_token_id
        self.llm_dim = config.text_config.hidden_size

        # HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
        self.post_init()

    # === `PreTrainedModel` Boilerplate ===
    def get_input_embeddings(self) -> nn.Module:
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value: nn.Module) -> None:
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self) -> nn.Module:
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
        self.language_model.set_output_embeddings(new_embeddings)

    def get_decoder(self) -> nn.Module:
        return self.language_model.get_decoder()

    def set_decoder(self, decoder: nn.Module) -> None:
        self.language_model.set_decoder(decoder)

    def tie_weights(self) -> None:
        self.language_model.tie_weights()  # Note: `Llama-2` and `Mistral` don't tie weights (no-op)

    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
        updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)

        # Update config/instance variables
        self.config.text_config.vocab_size = updated_embeddings.num_embeddings
        self.vocab_size = updated_embeddings.num_embeddings

        return updated_embeddings

    def _replace_input_embeddings(self, input_embeddings, all_actions_mask, noisy_action_features):
        """
        Replace embeddings in input_embeddings at positions where all_actions_mask is True
        with embeddings from noisy_action_features, using vectorized operations.

        Args:
            input_embeddings: Tensor of shape (B, S, D)
            all_actions_mask: Boolean tensor of shape (B, S)
            noisy_action_features: Tensor of shape (B, K, D) where K is the number of True values in mask per sample

        Returns:
            Modified input_embeddings tensor
        """
        # Clone input to avoid modifying the original tensor
        new_input_embeddings = input_embeddings.clone()

        # Create a tensor with the same shape of input_embeddings to hold the noisy action features
        repositioned_noisy_action_features = torch.zeros_like(input_embeddings)

        # Create batch indices for splicing
        batch_indices = torch.arange(input_embeddings.shape[0], device=input_embeddings.device)
        batch_indices = batch_indices.unsqueeze(1).expand(-1, noisy_action_features.shape[1])

        # Get indices where mask is True for each sample
        masked_indices = torch.stack([torch.where(mask)[0] for mask in all_actions_mask])

        # Move the noisy action features into their correct positions
        repositioned_noisy_action_features[batch_indices, masked_indices] = noisy_action_features

        # Combine original input embeddings and noisy action embeddings using the mask
        new_input_embeddings = torch.where(
            all_actions_mask.unsqueeze(-1), repositioned_noisy_action_features, new_input_embeddings
        )

        return new_input_embeddings

    def _process_action_masks(self, labels):
        """Helper to get action masks from labels"""
        current_action_mask = get_current_action_mask(labels)
        next_actions_mask = get_next_actions_mask(labels)
        all_actions_mask = current_action_mask | next_actions_mask  # (B, seq_len)
        return all_actions_mask

    def _process_vision_features(self, pixel_values, language_embeddings=None, use_film=False):
        """Process vision features with optional FiLM conditioning"""
        if use_film:
            # FiLM: Infuse language inputs into visual features
            patch_features = self.vision_backbone(pixel_values, language_embeddings)  # (bsz, 256 * num_images, D)
        else:
            patch_features = self.vision_backbone(pixel_values)  # (bsz, 256 * num_images, D)

        # Project patch embeddings into language embedding space
        return self.projector(patch_features)

    def _process_proprio_features(self, projected_patch_embeddings, proprio, proprio_projector):
        """Process proprioceptive features and append to vision features"""
        if proprio_projector is not None and proprio is not None:
            # projected_patch_embeddings: (bsz, num_patches * num_images, llm_dim)
            # proprio: (bsz, proprio_dim) or (propro_dim,)
            proprio = proprio.reshape(projected_patch_embeddings.shape[0], -1)  # (bsz, proprio_dim)
            proprio_features = proprio_projector(proprio)  # (bsz, llm_dim)
            proprio_features = proprio_features.unsqueeze(dim=1)  # (bsz, 1, llm_dim)
            # For simplicity, just append proprio token to the end of projected vision patch tokens
            return torch.cat((projected_patch_embeddings, proprio_features), dim=1)
        return projected_patch_embeddings

    def _build_multimodal_attention(self, input_embeddings, projected_patch_embeddings, attention_mask):
        """Build multimodal embeddings and attention mask"""
        # Update attention mask
        projected_patch_attention_mask = None
        if attention_mask is not None:
            projected_patch_attention_mask = torch.full(
                (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
                fill_value=True,
                dtype=attention_mask.dtype,
                device=attention_mask.device,
            )

        # Build multimodal embeddings & attention mask; insert embeddings after <BOS> token (1:)
        multimodal_embeddings = torch.cat(
            [input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
        )

        multimodal_attention_mask = None
        if attention_mask is not None:
            multimodal_attention_mask = torch.cat(
                [attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
            )

        return multimodal_embeddings, multimodal_attention_mask

    def _build_multimodal_labels(self, labels, projected_patch_embeddings):
        """Build multimodal labels with IGNORE_INDEX for patch embeddings"""
        if labels is not None:
            projected_patch_labels = torch.full(
                (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
                fill_value=IGNORE_INDEX,
                dtype=labels.dtype,
                device=labels.device,
            )
            return torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
        return None

    # === Core Prismatic VLM `forward()` Logic ===
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_projector_features: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        proprio=None,
        proprio_projector=None,
        noisy_actions=None,
        noisy_action_projector=None,
        diffusion_timestep_embeddings=None,
        use_film: bool = False,
    ) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
        """Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        output_projector_features = output_projector_features if output_projector_features is not None else False
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
        use_cache = use_cache and not self.training

        # Instantiate Placeholder for Projector Features
        projected_patch_embeddings = None

        # === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
        if input_ids.shape[1] == 1:
            assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
            assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
            assert labels is None, "Unexpected key `labels` provided during cached generation!"

            language_model_output = self.language_model(
                input_ids=input_ids,
                attention_mask=None,
                position_ids=None,
                past_key_values=past_key_values,
                inputs_embeds=None,
                labels=None,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        # === Handle Unimodal Forward ===
        elif pixel_values is None:
            assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
            assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"

            language_model_output = self.language_model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=None,
                past_key_values=None,
                inputs_embeds=None,
                labels=labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        # === Handle Multimodal Forward ===
        elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
            assert past_key_values is None, "Unexpected key `past_key_values` provided during multimodal forward!"

            # Get input embeddings (from language model embeddings)
            input_embeddings = self.get_input_embeddings()(input_ids)  # (B, seq_len, D)

            # Extract action masks
            all_actions_mask = self._process_action_masks(labels)

            # Extract the language portion of the input embeddings (i.e. remove the action tokens portion)
            language_embeddings = input_embeddings[~all_actions_mask].reshape(
                input_embeddings.shape[0], -1, input_embeddings.shape[2]
            )  # (B, lang_seq_len, llm_dim)

            # Get visual features
            projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)

            # Add proprioceptive state if provided
            projected_patch_embeddings = self._process_proprio_features(
                projected_patch_embeddings, proprio, proprio_projector
            )

            # [Diffusion] Add diffusion timestep embedding if provided
            if diffusion_timestep_embeddings is not None:
                # For simplicity, just append diffusion timestep embedding to the end of projected vision patch tokens
                projected_patch_embeddings = torch.cat(
                    (projected_patch_embeddings, diffusion_timestep_embeddings), dim=1
                )

            # Process action embeddings
            if noisy_actions is not None:
                # Get mask corresponding to all action tokens
                all_actions_mask = self._process_action_masks(labels)

                # Reshape noisy actions into individual action tokens
                # noisy_actions: (B, chunk_len, action_dim) -> (B, chunk_len * action_dim, 1)
                B = noisy_actions.shape[0]
                noisy_actions = noisy_actions.reshape(B, -1).unsqueeze(-1)

                # Project noisy action tokens into language model embedding space
                noisy_action_features = noisy_action_projector(noisy_actions)  # (B, chunk_len * action_dim, llm_dim)

                # Replace embeddings of the action tokens with noisy action embeddings
                input_embeddings = self._replace_input_embeddings(
                    input_embeddings, all_actions_mask, noisy_action_features
                )
            else:
                # Replace the embeddings of the action tokens with zeros
                # (Later on, the positional embeddings will be added to them)
                all_actions_mask = all_actions_mask.unsqueeze(-1)  # (B, seq_len, 1)
                input_embeddings = input_embeddings * ~all_actions_mask

            # Build multimodal embeddings & attention mask
            multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
                input_embeddings, projected_patch_embeddings, attention_mask
            )

            # Build labels for multimodal sequence if needed
            multimodal_labels = self._build_multimodal_labels(labels, projected_patch_embeddings)

            # Dispatch to language model
            language_model_output = self.language_model(
                input_ids=None,
                attention_mask=multimodal_attention_mask,
                position_ids=None,
                past_key_values=None,
                inputs_embeds=multimodal_embeddings,
                labels=multimodal_labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        # === Otherwise =>> Assume Invalid! ===
        elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
            raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")

        else:
            raise ValueError(
                "Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
                f"=> `input_ids` = {input_ids is not None}\n"
                f"=> `attention_mask` = {attention_mask is not None}\n"
                f"=> `pixel_values` = {pixel_values is not None}\n"
                f"=> `labels` = {labels is not None}\n"
                f"=> `input_embeds` = {inputs_embeds is not None}\n"
                f"=> `past_key_values` = {past_key_values is not None}\n"
                f"=> `use_cache` = {use_cache}"
            )

        # Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
        if not return_dict:
            if output_projector_features and (projected_patch_embeddings is not None):
                return *language_model_output, projected_patch_embeddings

            return language_model_output

        return PrismaticCausalLMOutputWithPast(
            loss=language_model_output.loss,
            logits=language_model_output.logits,
            past_key_values=language_model_output.past_key_values,
            hidden_states=language_model_output.hidden_states,
            attentions=language_model_output.attentions,
            projector_features=projected_patch_embeddings,
        )

    # === GenerationMixin Methods ===
    def prepare_inputs_for_generation(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs: str,
    ) -> Dict[str, torch.Tensor]:
        """Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
        if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
            (inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
        ):
            raise ValueError("Generation with batch size > 1 is not currently supported!")

        # Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
        if past_key_values is not None:
            input_ids = input_ids[:, -1:]

        # If `input_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"input_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        # Make sure `pixel_values` are preserved in `model_inputs`
        model_inputs.update(
            {
                "attention_mask": attention_mask,
                "pixel_values": pixel_values,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
            }
        )

        return model_inputs

    # Defer to Language Model (all handle this differently, with different return types)
    def _reorder_cache(self, *args, **kwargs) -> Any:
        return self.language_model._reorder_cache(*args, **kwargs)


class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
    config_class: PretrainedConfig = OpenVLAConfig

    def __init__(self, config: OpenVLAConfig) -> None:
        super().__init__(config)
        self.norm_stats = config.norm_stats

        # Compute action bins
        self.bins = np.linspace(-1, 1, config.n_action_bins)
        self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0

        # Compute vocab size for de-tokenization -- revert added "multiple of"
        self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of

    def _prepare_input_for_action_prediction(self, input_ids, attention_mask):
        """Prepares input for action prediction by adding necessary tokens"""
        # Add (ACTION_DIM * NUM_ACTIONS_CHUNK) placeholder tokens to input_ids to simulate action tokens
        placeholder_action_token_ids = (
            torch.ones((input_ids.shape[0], ACTION_DIM * NUM_ACTIONS_CHUNK)).to(input_ids.device).to(input_ids.dtype)
        )
        input_ids = torch.cat([input_ids, placeholder_action_token_ids], dim=-1)

        # Add stop token to sequence (needed in non-causal bi-directional self-attention, as it appears at train time)
        stop_token_id = torch.ones((input_ids.shape[0], 1)).to(input_ids.device).to(input_ids.dtype) * STOP_INDEX
        input_ids = torch.cat([input_ids, stop_token_id], dim=-1)

        # Extend the attention mask to fit the new shape of input
        # Note: Only batch size == 1 supported right now
        mask_extension = (
            torch.ones((attention_mask.shape[0], input_ids.shape[-1] - attention_mask.shape[-1]))
            .to(attention_mask.device)
            .to(attention_mask.dtype)
        )
        attention_mask = torch.cat([attention_mask, mask_extension], dim=-1)

        return input_ids, attention_mask

    def _prepare_labels_for_action_prediction(self, labels, input_ids):
        """Creates labels tensor for action prediction if not provided"""
        # Extend labels tensor with fake action labels
        ARBITRARY_ACTION_TOKEN_IDX = ACTION_TOKEN_BEGIN_IDX + 1
        labels_extension = (
            torch.ones((labels.shape[0], input_ids.shape[-1] - labels.shape[-1])).to(labels.device).to(labels.dtype)
            * ARBITRARY_ACTION_TOKEN_IDX
        )
        labels = torch.cat([labels, labels_extension], dim=-1)

        # Replace last label token with stop token
        labels[:, -1] = STOP_INDEX

        return labels

    def _unnormalize_actions(self, normalized_actions, unnorm_key=None):
        """Unnormalize actions using dataset statistics"""
        action_norm_stats = self.get_action_stats(unnorm_key)

        if ACTION_PROPRIO_NORMALIZATION_TYPE == NormalizationType.BOUNDS:
            mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["min"], dtype=bool))
            action_high, action_low = np.array(action_norm_stats["max"]), np.array(action_norm_stats["min"])
        elif ACTION_PROPRIO_NORMALIZATION_TYPE == NormalizationType.BOUNDS_Q99:
            mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
            action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
        else:
            raise ValueError("Unsupported action/proprio normalization type detected!")

        actions = np.where(
            mask,
            0.5 * (normalized_actions + 1) * (action_high - action_low + 1e-8) + action_low,
            normalized_actions,
        )

        return actions

    def _run_diffusion_prediction(
        self,
        input_embeddings,
        all_actions_mask,
        noise,
        action_head,
        projected_patch_embeddings,
        labels,
        attention_mask,
        NUM_PATCHES,
        NUM_PROMPT_TOKENS,
        noisy_action_projector,
    ):
        """Run diffusion-based action prediction"""
        # Set diffusion timestep values
        action_head.noise_scheduler.set_timesteps(action_head.num_diffusion_steps)
        # Clone embedding for reuse in each timestep
        orig_projected_patch_embeddings = projected_patch_embeddings.clone()
        curr_noisy_actions = noise

        # Reverse diffusion: Iteratively denoise to generate action prediction
        for t in action_head.noise_scheduler.timesteps:
            # Get diffusion model's noise prediction (conditioned on VLA latent embedding, current noisy action
            # embedding, and diffusion timestep embedding)
            timesteps = torch.Tensor([t]).to(labels.device)
            diffusion_timestep_embeddings = (
                action_head.time_encoder(timesteps).to(curr_noisy_actions.dtype).to(curr_noisy_actions.device)
            )  # (B, llm_dim)
            diffusion_timestep_embeddings = diffusion_timestep_embeddings.unsqueeze(1)  # (B, 1, llm_dim)

            # [Diffusion] Replace the embeddings of the action tokens with noisy actions
            # (Later on, the positional embeddings will be added to them)

            # For simplicity, append diffusion timestep embedding to the end of projected vision tokens
            projected_patch_embeddings = torch.cat(
                (orig_projected_patch_embeddings, diffusion_timestep_embeddings), dim=1
            )

            # Reshape and project noisy actions into language embedding space
            B = curr_noisy_actions.shape[0]
            orig_curr_noisy_actions_shape = curr_noisy_actions.shape
            curr_noisy_actions = curr_noisy_actions.reshape(B, -1).unsqueeze(-1)
            noisy_action_features = noisy_action_projector(curr_noisy_actions)
            curr_noisy_actions = curr_noisy_actions.reshape(orig_curr_noisy_actions_shape)

            # Replace action token embeddings with noisy action embeddings
            input_embeddings = self._replace_input_embeddings(
                input_embeddings.clone(), all_actions_mask, noisy_action_features
            )

            # Build multimodal embeddings and attention mask
            multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
                input_embeddings, projected_patch_embeddings, attention_mask
            )

            # Forward pass through language model
            language_model_output = self.language_model(
                input_ids=None,
                attention_mask=multimodal_attention_mask,
                position_ids=None,
                past_key_values=None,
                inputs_embeds=multimodal_embeddings,
                labels=None,
                use_cache=None,
                output_attentions=False,
                output_hidden_states=True,
                return_dict=True,
            )

            # Extract hidden states for action portion of response
            last_hidden_states = language_model_output.hidden_states[-1]  # (B, seq_len, D)
            actions_hidden_states = last_hidden_states[
                :,
                NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
                :,
            ]  # (B, act_chunk_len, D)

            # Predict noise and update noisy actions: x_t -> x_{t-1}
            noise_pred = action_head.predict_noise(actions_hidden_states)
            curr_noisy_actions = action_head.noise_scheduler.step(noise_pred, t, curr_noisy_actions).prev_sample

        curr_noisy_actions = curr_noisy_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)

        # Return final actions
        return curr_noisy_actions.float().cpu().detach().numpy(), actions_hidden_states

    def _regression_or_discrete_prediction(
        self,
        input_embeddings,
        all_actions_mask,
        projected_patch_embeddings,
        attention_mask,
        labels,
        NUM_PATCHES,
        NUM_PROMPT_TOKENS,
        action_head=None,
    ):
        """Run L1 regression-based continuous action prediction or discrete action tokens prediction."""
        # Zero out action token embeddings
        all_actions_mask = all_actions_mask.unsqueeze(-1)  # (B, seq_len, 1)
        input_embeddings = input_embeddings * ~all_actions_mask

        # Build multimodal embeddings and attention mask
        multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
            input_embeddings, projected_patch_embeddings, attention_mask
        )

        # Forward pass through language model
        language_model_output = self.language_model(
            input_ids=None,
            attention_mask=multimodal_attention_mask,
            position_ids=None,
            past_key_values=None,
            inputs_embeds=multimodal_embeddings,
            labels=None,
            use_cache=None,
            output_attentions=False,
            output_hidden_states=True,
            return_dict=True,
        )

        # Extract hidden states for action tokens
        last_hidden_states = language_model_output.hidden_states[-1]  # (B, seq_len, D)
        actions_hidden_states = last_hidden_states[
            :,
            NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
            :,
        ]  # (B, act_chunk_len, D)

        # Handle different prediction methods
        if action_head is not None:
            # L1 regression prediction
            normalized_actions = action_head.predict_action(actions_hidden_states)
            normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
            normalized_actions = normalized_actions.float().cpu().detach().numpy()
        else:
            # Discrete token-based prediction
            predicted_action_token_ids = (
                language_model_output.logits[
                    :,
                    NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
                ]
                .argmax(dim=2)
                .cpu()
                .numpy()
            )
            discretized_actions = self.vocab_size - predicted_action_token_ids
            discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
            normalized_actions = self.bin_centers[discretized_actions]
            normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)

        return normalized_actions, actions_hidden_states

    def predict_action(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        unnorm_key: Optional[str] = None,
        proprio=None,
        proprio_projector=None,
        action_head=None,
        noisy_action_projector=None,
        use_film: bool = False,
        **kwargs: str,
    ) -> np.ndarray:
        """Predict actions from input sequence, with options for different prediction methods.

        Args:
            input_ids: Input token ids
            unnorm_key: Key for unnormalization statistics
            proprio: Proprioceptive features
            proprio_projector: Projector for proprioceptive features
            action_head: Optional head for L1 regression or diffusion-based prediction
            noisy_action_projector: Projector for noisy actions in diffusion-based prediction
            use_film: Whether to use FiLM conditioning
            **kwargs: Additional arguments including pixel_values and attention_mask

        Returns:
            Tuple of (unnormalized_actions, action_hidden_states)
        """
        # If the special empty token ('') does not already appear after the colon (':') token in the prompt
        # (after "OUT:" or "ASSISTANT:"), insert it to match the inputs seen at training time
        if not torch.all(input_ids[:, -1] == 29871):
            input_ids = torch.cat(
                (input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
            )

        pixel_values = kwargs["pixel_values"]
        attention_mask = kwargs["attention_mask"]

        # Create fake labels tensor (needed for action mask)
        labels = input_ids.clone()
        labels[:] = IGNORE_INDEX

        # Get number of tokens in prompt (excluding the start token)
        NUM_PROMPT_TOKENS = input_ids.shape[-1] - 1  # Subtract action tokens and stop token

        # Prepare inputs by adding necessary tokens
        input_ids, attention_mask = self._prepare_input_for_action_prediction(input_ids, attention_mask)

        # Update labels tensor for action mask computation later
        labels = self._prepare_labels_for_action_prediction(labels, input_ids)

        # Get input embeddings and action masks
        input_embeddings = self.get_input_embeddings()(input_ids)
        all_actions_mask = self._process_action_masks(labels)

        # Extract language embeddings
        language_embeddings = input_embeddings[~all_actions_mask].reshape(
            input_embeddings.shape[0], -1, input_embeddings.shape[2]
        )

        # Process vision features
        projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)

        # Add proprioceptive features if provided
        use_proprio = proprio_projector is not None and proprio is not None
        if use_proprio:
            proprio = torch.Tensor(proprio).to(projected_patch_embeddings.device, dtype=projected_patch_embeddings.dtype)
            projected_patch_embeddings = self._process_proprio_features(
                projected_patch_embeddings, proprio, proprio_projector
            )

        # Use diffusion if provided, otherwise use regression or discrete prediction
        use_diffusion = noisy_action_projector is not None and hasattr(action_head, "noise_scheduler")

        # Calculate number of patches (including proprio token and/or diffusion timestep embedding if present)
        NUM_PATCHES = self.vision_backbone.get_num_patches() * self.vision_backbone.get_num_images_in_input()
        if use_proprio:
            NUM_PATCHES += 1
        if use_diffusion:
            NUM_PATCHES += 1

        if use_diffusion:
            # Sample random noise with shape equal to output action, used as the starting state for reverse diffusion
            noise = torch.randn(
                size=(1, NUM_ACTIONS_CHUNK, ACTION_DIM), device=input_embeddings.device, dtype=input_embeddings.dtype
            )

            # Run diffusion-based prediction
            normalized_actions, actions_hidden_states = self._run_diffusion_prediction(
                input_embeddings,
                all_actions_mask,
                noise,
                action_head,
                projected_patch_embeddings,
                labels,
                attention_mask,
                NUM_PATCHES,
                NUM_PROMPT_TOKENS,
                noisy_action_projector,
            )
        else:
            # Run regression or discrete token-based prediction
            normalized_actions, actions_hidden_states = self._regression_or_discrete_prediction(
                input_embeddings,
                all_actions_mask,
                projected_patch_embeddings,
                attention_mask,
                labels,
                NUM_PATCHES,
                NUM_PROMPT_TOKENS,
                action_head,
            )

        # Unnormalize predicted actions
        actions = self._unnormalize_actions(normalized_actions, unnorm_key)

        return actions, actions_hidden_states

    @staticmethod
    def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
        """Validate and resolve the unnormalization key for action statistics"""
        if unnorm_key is None:
            assert len(norm_stats) == 1, (
                f"Your model was trained on more than one dataset, "
                f"please pass a `unnorm_key` from the following options to choose the statistics "
                f"used for un-normalizing actions: {norm_stats.keys()}"
            )
            unnorm_key = next(iter(norm_stats.keys()))

        assert unnorm_key in norm_stats, (
            f"The `unnorm_key` you chose is not in the set of available dataset statistics, "
            f"please choose from: {norm_stats.keys()}"
        )
        return unnorm_key

    def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
        """Get the dimensionality of the policy's action space."""
        unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
        return len(self.norm_stats[unnorm_key]["action"]["min"])

    def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
        """Get all the logged statistics for the given dataset."""
        unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
        return self.norm_stats[unnorm_key]["action"]