--- base_model: mor40/BulBERT-chitanka-model tags: - generated_from_trainer datasets: - bgglue metrics: - accuracy model-index: - name: BulBERT-ct21-5pochs results: - task: name: Text Classification type: text-classification dataset: name: bgglue type: bgglue config: ct21t1 split: validation args: ct21t1 metrics: - name: Accuracy type: accuracy value: 0.84 --- # BulBERT-ct21-5pochs This model is a fine-tuned version of [mor40/BulBERT-chitanka-model](https://huggingface.co/mor40/BulBERT-chitanka-model) on the bgglue dataset. It achieves the following results on the evaluation set: - Loss: 1.0051 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 163 | 0.4891 | 0.7743 | | No log | 2.0 | 326 | 0.5475 | 0.8257 | | No log | 3.0 | 489 | 0.7889 | 0.82 | | 0.288 | 4.0 | 652 | 0.9438 | 0.8286 | | 0.288 | 5.0 | 815 | 1.0051 | 0.84 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1