--- language: - ko - en library_name: transformers base_model: - moreh/Llama-3-Motif-102B --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c0c845a04a514ba62bcd1a/RFpsPxlc_3cK0kmWj-tYR.png) # **Introduction** We introduce Llama-3-Motif, a new language model family of [**Moreh**](https://moreh.io/), specialized in Korean and English.\ Llama-3-Motif-102B-Instruct is a chat model tuned from the base model [Llama-3-Motif-102B](https://huggingface.co/moreh/Motif-102B). ## Training Platform - Llama-3-Motif-102B model family is trained on [**MoAI platform**](https://moreh.io/product), refer to link for more information. ## Quick Usage You can chat directly with our model Llama-3-Motif through our [Model hub](https://model-hub.moreh.io/). ## Details More details will be provided in the upcoming technical report. Effective context length is 32k(avg 81) based on [RULER](https://github.com/NVIDIA/RULER) benchmark. ### Release Date 2024.12.02 ### Benchmark Results |Provider|Model|kmmlu_direct score|| |---|---|---|---| |Moreh|Llama-3-Motif-102B|64.74|+| |Moreh|**Llama-3-Motif-102B-Instruct**|**64.81**|+| |Meta|Llama3-70B-instruct|54.5*|| |Meta|Llama3.1-70B-instruct|52.1*|| |Meta|Llama3.1-405B-instruct|65.8*|| |Alibaba|Qwen2-72B-instruct|64.1*|| |OpenAI|GPT-4-0125-preview|59.95*|| |OpenAI|GPT-4o-2024-05-13|64.11**|| |Google|gemini pro|50.18*|| |LG|exaone 3.0|44.5*|+| |Naver|HyperCLOVA X|53.4*|+| |Upstage|SOLAR-10.7B|41.65*|+| \* : Community report \*\* : Measured by Moreh \+ : Claimed to have better capability in Korean ## How to use ### Use with vLLM - Refer to this [link](https://github.com/vllm-project/vllm) to install vllm ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams # Change tensor_parallel_size to GPU numbers you can afford model = LLM("moreh/Motif-102B-Instruct", tensor_parallel_size=4) tokenizer = AutoTokenizer.from_pretrained("moreh/Llama-3-Motif-102B-Instruct") messages = [ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "유치원생에게 빅뱅 이론의 개념을 설명해보세요"}, ] messages_batch = [tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)] # vllm does not support generation_config of hf. So we have to set it like below sampling_params = SamplingParams(max_tokens=512, temperature=0, repetition_penalty=1.0, stop_token_ids=[tokenizer.eos_token_id]) responses = model.generate(messages_batch, sampling_params=sampling_params) print(responses[0].outputs[0].text) ``` ### Use with transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "moreh/Llama-3-Motif-102B-Instruct" # all generation configs are set in generation_configs.json model = AutoModelForCausalLM.from_pretrained(model_id).cuda() tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "유치원생에게 빅뱅 이론의 개념을 설명해보세요"}, ] messages_batch = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False) input_ids = tokenizer(messages_batch, padding=True, return_tensors='pt')['input_ids'].cuda() outputs = model.generate(input_ids) ```