--- base_model: medicalai/ClinicalBERT tags: - generated_from_trainer model-index: - name: ICU_Returns_ClinicalBERT results: [] --- # ICU_Returns_ClinicalBERT This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3201 - F1:: 0.7134 - Roc Auc: 0.7225 - Precision with 0:: 0.8462 - Precision with 1:: 0.6640 - Recall with 0:: 0.5440 - Recal with 1:: 0.9011 - Accuracy:: 0.7225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1: | Roc Auc | Precision with 0: | Precision with 1: | Recall with 0: | Recal with 1: | Accuracy: | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-----------------:|:-----------------:|:--------------:|:--------------:|:---------:| | No log | 1.0 | 46 | 0.7057 | 0.3454 | 0.5055 | 1.0 | 0.5028 | 0.0110 | 1.0 | 0.5055 | | No log | 2.0 | 92 | 0.6827 | 0.5715 | 0.5742 | 0.5882 | 0.5640 | 0.4945 | 0.6538 | 0.5742 | | No log | 3.0 | 138 | 0.7221 | 0.4612 | 0.5467 | 0.7297 | 0.5260 | 0.1484 | 0.9451 | 0.5467 | | No log | 4.0 | 184 | 0.6284 | 0.6693 | 0.6841 | 0.6293 | 0.8190 | 0.8956 | 0.4725 | 0.6841 | | No log | 5.0 | 230 | 0.9235 | 0.6283 | 0.6401 | 0.7179 | 0.6032 | 0.4615 | 0.8187 | 0.6401 | | No log | 6.0 | 276 | 0.8772 | 0.6534 | 0.6648 | 0.7586 | 0.6210 | 0.4835 | 0.8462 | 0.6648 | | No log | 7.0 | 322 | 0.7968 | 0.7677 | 0.7692 | 0.8224 | 0.7311 | 0.6868 | 0.8516 | 0.7692 | | No log | 8.0 | 368 | 0.6826 | 0.8132 | 0.8132 | 0.8167 | 0.8098 | 0.8077 | 0.8187 | 0.8132 | | No log | 9.0 | 414 | 1.2195 | 0.6950 | 0.7033 | 0.8033 | 0.6529 | 0.5385 | 0.8681 | 0.7033 | | No log | 10.0 | 460 | 0.9542 | 0.7617 | 0.7637 | 0.8243 | 0.7222 | 0.6703 | 0.8571 | 0.7637 | | 0.3635 | 11.0 | 506 | 1.3032 | 0.7079 | 0.7143 | 0.8047 | 0.6653 | 0.5659 | 0.8626 | 0.7143 | | 0.3635 | 12.0 | 552 | 1.4170 | 0.7063 | 0.7143 | 0.8197 | 0.6612 | 0.5495 | 0.8791 | 0.7143 | | 0.3635 | 13.0 | 598 | 1.3201 | 0.7134 | 0.7225 | 0.8462 | 0.6640 | 0.5440 | 0.9011 | 0.7225 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1