|
|
|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
from utils import load_image, load_video |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
dir, rev = '../', 'main' |
|
|
|
|
|
model = AutoModel.from_pretrained(dir, |
|
torch_dtype=torch.bfloat16, |
|
load_in_8bit=False, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=True, |
|
trust_remote_code=True, |
|
revision=rev).eval().cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(dir, trust_remote_code=True, use_fast=False) |
|
generation_config = dict(max_new_tokens=1024, do_sample=False) |
|
|
|
paths = [ |
|
'image1.jpg', |
|
'image1.jpg', |
|
'image2.jpg', |
|
'red-panda.mp4', |
|
] |
|
|
|
questions = [ |
|
'describe this image', |
|
'describe this image', |
|
'describe this image', |
|
'describe this video' |
|
] |
|
|
|
pixel_values, num_patches_list = [], [] |
|
for i, fp in enumerate(paths): |
|
|
|
if fp.endswith('mp4'): |
|
pxl_val, num_patches = load_video(fp, num_segments=8, max_num=1) |
|
prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches))]) |
|
else: |
|
pxl_val = load_image(fp, max_num=12).to(torch.bfloat16) |
|
num_patches = [len(pxl_val)] |
|
prefix = '<image>\n' |
|
|
|
pixel_values.append(pxl_val) |
|
num_patches_list.append(num_patches) |
|
questions[i] = prefix + questions[i] |
|
|
|
pixel_values = torch.cat(pixel_values).to(torch.bfloat16).cuda() |
|
response = model.batch_chat(tokenizer, pixel_values, questions, generation_config, |
|
num_patches_list=num_patches_list, history=None, return_history=False) |
|
|
|
for q, r in zip(questions, response): |
|
print(f'User: {q}\nAssistant: {r}') |
|
print('\n') |