--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-3B-Instruct tags: - axolotl - generated_from_trainer datasets: - minpeter/xlam-function-calling-60k-hermes - minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes model-index: - name: m-3b-v1-iteration-00-sf-xlam-07 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.7.0` ```yaml base_model: meta-llama/Llama-3.2-3B-Instruct hub_model_id: morsmordre/m-3b-v1-iteration-00-sf-xlam-07 load_in_8bit: false load_in_4bit: false strict: false datasets: - path: minpeter/xlam-function-calling-60k-hermes data_files: - result.parquet type: chat_template chat_template: llama3 field_messages: conversations message_field_role: from message_field_content: value shards: 30 - path: minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes data_files: - result.parquet type: chat_template chat_template: llama3 field_messages: conversations message_field_role: from message_field_content: value shards: 5 chat_template: llama3 dataset_prepared_path: last_run_prepared output_dir: ./output adapter: lora lora_model_dir: sequence_len: 4096 pad_to_sequence_len: true sample_packing: true val_set_size: 0.05 eval_sample_packing: true evals_per_epoch: 3 lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|finetune_right_pad_id|>" ```

# m-3b-v1-iteration-00-sf-xlam-07 This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the minpeter/xlam-function-calling-60k-hermes and the minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes datasets. It achieves the following results on the evaluation set: - Loss: 0.2159 ## Model description | Test Category | Adapter Accuracy | Base Model Accuracy | Improvement | | ----------------- | ---------------- | ------------------- | ----------- | | irrelevance | 76.25% | 72.08% | +4.17% | | parallel_multiple | 89.50% | 10.00% | +79.50% | | parallel | 89.50% | 11.50% | +78.00% | | simple | 92.75% | 24.75% | +68.00% | | multiple | 93.50% | 20.00% | +73.50% | ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | | :-----------: | :----: | :---: | :-------------: | | 0.8199 | 0.0072 | 1 | 0.6489 | | 0.0898 | 0.3381 | 47 | 0.2228 | | 0.2114 | 0.6763 | 94 | 0.2159 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0