File size: 22,296 Bytes
ef9200f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import logging
import os
from typing import Tuple, Union
import torch
from torch.utils.data import DataLoader
from transformers import PreTrainedTokenizerBase
from .collator import Seq2SeqFinetuningCollator, validate_target_settings
from .tasks import DOWNLOADED_FT_DATASETS_DIRPATH, SUPPORTED_EXTENSIONS, dataset_constructor
from .packing import BinPackCollator, auto_packing_ratio
from .text_data import build_streams, get_tokens_per_batch_func
from .exceptions import MissingHuggingFaceURLSplitError, NotEnoughDatasetSamplesError
log = logging.getLogger(__name__)
_HF_IGNORE_INDEX = -100
_DEFAULT_TARGET_RESPONSES = 'last'
_DEFAULT_TARGET_PROMPTS = 'none'

def build_finetuning_dataloader(cfg: DictConfig, tokenizer: PreTrainedTokenizerBase, device_batch_size: int) -> DataSpec:
    """Builds a finetuning dataloader for training or evaluating.

    The underlying dataset can be built through one of two code paths:
        1. As a HuggingFace dataset, via `datasets.load_dataset(...)`
        2. As a streaming dataset
    You will need to set slightly different dataset config fields depending
    on which you intend to use, as explained below.

    Args:
        cfg (DictConfig): An omegaconf dictionary used to configure the loader:
            cfg.name (str): The type of dataloader to build. Must = "finetuning".
            ---
            *** HuggingFace dataset config fields ***
            cfg.dataset.hf_name (str, optional): The name of the HuggingFace dataset
                to use. Can also be a remote http(s) directory or object store bucket
                containing the file {split}.jsonl in the format (prompt, response),
                in which case the builder will create a HuggingFace dataset.
            cfg.dataset.hf_kwargs (DictConfig, optional): Additional kwargs to
                pass to `datasets.load_dataset`, which can be used to load
                a dataset from local files.
            cfg.dataset.preprocessing_fn (str, optional): The name/import path of
                the preprocessing function to use for formatting the data examples.
                If ``None`` (default), the builder will use the preprocessing function
                    registered under `hf_name` (see `tasks.py`), if one exists,
                    otherwise it will skip preprocessing.
                If `preprocessing_fn` corresponds to a registered preprocessing
                    function in `tasks.py`, the builder will use that.
                Otherwise, it will interpret `preprocessing_fn` as a
                    "import.path:function_name" import path; e.g., it will call
                    `from import.path import function_name` and use the imported
                    function as the preprocessing function.
            *** Streaming dataset config fields ***
            cfg.dataset.remote (str, optional): Location of a MDS-formatted
                streaming dataset to use. Setting this will tell the builder
                to create a streaming dataset rather than a HuggingFace dataset.
            cfg.dataset.local (str, optional): Local path where remote data
                will be streamed to. Only valid if `cfg.dataset.remote` has
                also been set.
            *** Shared dataset configs fields ***
            cfg.dataset.max_seq_len (int): The maximum length of sequences
                in the batch. See :class:`Seq2SeqFinetuningCollator` docstring
                for details.
            cfg.dataset.decoder_only_format (bool): Whether to format the
                examples for a decoder-only model. See :class:`Seq2SeqFinetuningCollator`
                docstring for details.
            cfg.dataset.target_responses (str): Which responses are used as training targets.
                Defaults to "last", meaning only the final response in multi-turn examples
                will serve as training targets. See :class:`Seq2SeqFinetuningCollator` docstring for
                details.
            cfg.dataset.target_prompts (str): Which prompts are used as training targets.
                Defaults to "none", meaning prompts are never used as training targets.
                See :class:`Seq2SeqFinetuningCollator` docstring for details.
            cfg.dataset.allow_pad_trimming (bool, optional): Whether to allow
                the collator to trim padding. See :class:`Seq2SeqFinetuningCollator`
                docstring for details. Default: ``False``.
            cfg.dataset.packing_ratio (Optional[float, Literal['auto']]): If provided, this invokes
                a collator wrapper that packs device_batch_size*packing_ratio
                raw examples into device_batch_size packed examples. This helps
                minimize padding while preserving sequence integrity.
                This adds `sequence_id` to the batch, which indicates which unique
                sequence each token belongs to.

                If set to 'auto', packing_ratio is profiled and the highest observed packing ratio with
                zero waste is selected.
                In practice, this may result in > 0 waste because profiling is done on only a portion
                of the dataset.

                Note: Using this feature will not change device_batch_size but it
                    will determine the number of raw examples consumed by the dataloader
                    per batch. Some examples may be discarded if they do not fit when
                    packing.
                    Select packing_ratio **carefully** based on the dataset
                    statistics, max_seq_len, and tolerance for discarding samples!
                    The script `scripts/misc/profile_packing.py` can help
                    you choose the best packing_ratio.
            cfg.dataset.shuffle (bool): Whether to shuffle the dataset.
            ___
            See :class:`StreamingFinetuningDataset` for info on other standard config
                options within `cfg.dataset` that will be passed as kwargs if
                using the streaming codepath.
            ---
            See :class:`DataLoader` for standard argument options to the pytorch
                dataloader, such as `cfg.drop_last`, `cfg.num_workers`, etc.
        tokenizer (transformers.PreTrainedTokenizer): The tokenizer used to
            prepare the data from raw text. Any missing sentinel tokens will
            be added by the collator.
        device_batch_size (int): The size of the batches (number of examples)
            that the dataloader will produce.

    Returns:
        A pytorch dataloader

    Note:
        You can run the script inside `scripts/misc/profile_packing.py` to quickly test the
        padding/waste rates for different `cfg.dataset.packing_ratio` choices,
        given a starting workload YAML.
    """
    _validate_config(cfg.dataset)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    collate_fn, dataloader_batch_size = _build_collate_fn(cfg, tokenizer, device_batch_size)
    dataset = None
    sampler = None
    if cfg.dataset.get('remote') is not None or cfg.dataset.get('streams') is not None:
        streams = build_streams(cfg.dataset)
        dataset = dataset_constructor.build_from_streaming(tokenizer=tokenizer, streams=streams, local=cfg.dataset.get('local', None), remote=cfg.dataset.get('remote', None), split=cfg.dataset.get('split', None), download_retry=cfg.dataset.get('download_retry', 2), download_timeout=cfg.dataset.get('download_timeout', 60), validate_hash=cfg.dataset.get('validate_hash', None), keep_zip=cfg.dataset.get('keep_zip', False), epoch_size=cfg.dataset.get('epoch_size', None), predownload=cfg.dataset.get('predownload', None), cache_limit=cfg.dataset.get('cache_limit', None), partition_algo=cfg.dataset.get('partition_algo', 'relaxed'), num_canonical_nodes=cfg.dataset.get('num_canonical_nodes', None), batch_size=device_batch_size, shuffle=cfg.dataset.get('shuffle', False), shuffle_algo=cfg.dataset.get('shuffle_algo', 'py1e'), shuffle_seed=cfg.dataset.get('shuffle_seed', 9176), shuffle_block_size=cfg.dataset.get('shuffle_block_size', None), sampling_method=cfg.dataset.get('sampling_method', 'balanced'), sampling_granularity=cfg.dataset.get('sampling_granularity', 1), batching_method=cfg.dataset.get('batching_method', 'random'), max_seq_len=cfg.dataset.max_seq_len)
    else:
        dataset_name_or_path = cfg.dataset.hf_name
        split = cfg.dataset.get('split')
        if split is None:
            raise MissingHuggingFaceURLSplitError()
        backend, _, _ = parse_uri(dataset_name_or_path)
        if backend not in ['', None]:
            dataset_name_or_path = _download_remote_hf_dataset(remote_path=dataset_name_or_path, split=split)
            split = split.replace('-', '_')
        proto_preprocessing_fn = cfg.dataset.get('preprocessing_fn')
        if isinstance(proto_preprocessing_fn, (dict, DictConfig)):
            preprocessing_fn = dataset_constructor.get_preprocessing_fn_from_dict(dict(proto_preprocessing_fn))
        else:
            preprocessing_fn = dataset_constructor.get_preprocessing_fn_from_str(proto_preprocessing_fn, dataset_name_or_path)
        dataset = dataset_constructor.build_from_hf(dataset_name=dataset_name_or_path, split=split, safe_load=cfg.dataset.get('safe_load', False), max_seq_len=cfg.dataset.max_seq_len, preprocessing_fn=preprocessing_fn, tokenizer=tokenizer, target_prompts=cfg.dataset.get('target_prompts', _DEFAULT_TARGET_PROMPTS), target_responses=cfg.dataset.get('target_responses', _DEFAULT_TARGET_RESPONSES), decoder_only_format=cfg.dataset.decoder_only_format, hf_kwargs=cfg.dataset.get('hf_kwargs', {}))
        if cfg.drop_last:
            world_size = dist.get_world_size()
            minimum_dataset_size = world_size * dataloader_batch_size
            if hasattr(dataset, '__len__'):
                full_dataset_size = len(dataset)
                if full_dataset_size < minimum_dataset_size:
                    raise NotEnoughDatasetSamplesError(dataset_name=cfg.dataset.hf_name, split=split, dataloader_batch_size=dataloader_batch_size, world_size=world_size, full_dataset_size=full_dataset_size, minimum_dataset_size=minimum_dataset_size)
        sampler = dist.get_sampler(dataset, drop_last=cfg.drop_last, shuffle=cfg.dataset.shuffle)
    assert dataset is not None
    dl = DataLoader(dataset, collate_fn=collate_fn, batch_size=dataloader_batch_size, drop_last=cfg.drop_last, sampler=sampler, num_workers=cfg.num_workers, pin_memory=cfg.get('pin_memory', True), prefetch_factor=cfg.get('prefetch_factor', 2), persistent_workers=cfg.get('persistent_workers', True), timeout=cfg.get('timeout', 0))
    token_counting_func = get_tokens_per_batch_func()
    return DataSpec(dataloader=dl, get_num_tokens_in_batch=token_counting_func)

def _validate_config(dataset_cfg: DictConfig) -> None:
    """Validates the dataset configuration.

    Makes sure that the dataset is properly configured for either
    a HuggingFace dataset or a streaming dataset. Must be valid for one or
    the other.

    Args:
        dataset_cfg (DictConfig): The dataset configuration to be validated.

    Raises:
        ValueError: If the dataset configuration does not meet the requirements.
    """
    if dataset_cfg.get('hf_name') is not None:
        illegal_keys = ['local', 'remote']
        discovered_illegal_keys = []
        for key in illegal_keys:
            if dataset_cfg.get(key) is not None:
                discovered_illegal_keys.append('`' + key + '`')
        if discovered_illegal_keys:
            raise ValueError('The dataset config sets a value for `hf_name` as well as the ' + f"following keys: {', '.join(discovered_illegal_keys)}.\n" + 'Those keys are used when building from a streaming dataset, but ' + 'setting `hf_name` instructs the dataset to build from a HuggingFace dataset.')
    elif dataset_cfg.get('remote') is not None:
        illegal_keys = ['hf_name', 'hf_kwargs', 'preprocessing_fn', 'safe_load']
        discovered_illegal_keys = []
        for key in illegal_keys:
            if dataset_cfg.get(key) is not None:
                discovered_illegal_keys.append('`' + key + '`')
        if discovered_illegal_keys:
            raise ValueError('The dataset config sets a value for `remote` as well as the ' + f"following keys: {', '.join(discovered_illegal_keys)}.\n" + 'Those keys are used when building from a HuggingFace dataset, but ' + 'setting `remote` instructs the dataset to build from a streaming dataset.')
        if dataset_cfg.get('local') is None:
            raise ValueError('Using a streaming dataset requires setting both `remote` and `local`, ' + 'but dataset.local is None.')
    elif dataset_cfg.get('streams') is not None:
        illegal_keys = ['hf_name', 'hf_kwargs', 'preprocessing_fn', 'safe_load']
        discovered_illegal_keys = []
        for key in illegal_keys:
            if dataset_cfg.get(key) is not None:
                discovered_illegal_keys.append('`' + key + '`')
        if discovered_illegal_keys:
            raise ValueError('The dataset config sets a value for `streams` as well as the ' + f"following keys: {', '.join(discovered_illegal_keys)}.\n" + 'Those keys are used when building from a HuggingFace dataset, but ' + 'setting `streams` instructs the dataset to build from a streaming dataset.')
        illegal_keys = ['remote', 'local']
        discovered_illegal_keys = []
        for key in illegal_keys:
            if dataset_cfg.get(key) is not None:
                discovered_illegal_keys.append('`' + key + '`')
        if discovered_illegal_keys:
            raise ValueError('The dataset config sets a value for `streams` as well as the ' + f"following keys: {', '.join(discovered_illegal_keys)}.\n" + 'Please either use single stream (set remote/local only) ' + 'or put remote/local under streams')
    else:
        raise ValueError('In the dataset config, you must set `hf_name` to use a HuggingFace ' + 'dataset, or set `remote` to use a streaming dataset, or set ' + '`streams` to use multiple streaming datasets,  but all were None.')
    if dataset_cfg.get('max_seq_len') is None:
        raise ValueError('In the dataset config, you must set the `max_seq_len`')
    target_responses = str(dataset_cfg.get('target_responses', _DEFAULT_TARGET_RESPONSES)).lower()
    target_prompts = str(dataset_cfg.get('target_prompts', _DEFAULT_TARGET_PROMPTS)).lower()
    decoder_only_format = dataset_cfg.decoder_only_format
    validate_target_settings(target_prompts, target_responses, decoder_only_format)

def _download_remote_hf_dataset(remote_path: str, split: str) -> str:
    """Downloads a dataset from a remote object store.

    This function supports 'jsonl', 'csv', and 'parquet' file formats for the dataset. It will attempt to download
    the dataset, then once it is downloaded, convert it into HuggingFace ``datasets`` format, and then return this
    dataset.

    The function also ensures synchronicity across multiple processes during the file download. It creates a signal
    file that is used to synchronize the start of the download across different processes. Once the download is
    completed, the function removes the signal file.

    Args:
        hf_name (str): The path of the HuggingFace dataset to download.
        split (str): The dataset split to download (e.g., 'train', 'validation', 'test').

    Returns:
        A local directory path where the dataset files are stored.

    Raises:
        FileNotFoundError: Raised if the dataset file cannot be found with any of the supported extensions.
    """
    hf_formatted_split = split.replace('-', '_')
    finetune_dir = os.path.join(DOWNLOADED_FT_DATASETS_DIRPATH, hf_formatted_split if hf_formatted_split != 'data' else 'data_not')
    os.makedirs(finetune_dir, exist_ok=True)
    for extension in SUPPORTED_EXTENSIONS:
        name = f"{remote_path.strip('/')}/{split}{extension}"
        destination = str(os.path.abspath(os.path.join(finetune_dir, 'data', f'{hf_formatted_split}-00000-of-00001{extension}')))
        signal_file_path = os.path.join(finetune_dir, f'.node_{dist.get_node_rank()}_local_rank0_completed')
        if dist.get_local_rank() == 0:
            try:
                get_file(path=name, destination=destination, overwrite=True)
            except FileNotFoundError as e:
                if extension == SUPPORTED_EXTENSIONS[-1]:
                    files_searched = [f'{cfg.dataset.hf_name}/{cfg.dataset.split}{ext}' for ext in SUPPORTED_EXTENSIONS]
                    raise FileNotFoundError(f'Could not find a file with any of ' + f'the supported extensions: {SUPPORTED_EXTENSIONS}\n' + f'at {files_searched}') from e
                else:
                    log.debug(f'Could not find {name}, looking for another extension')
                continue
            os.makedirs(os.path.dirname(signal_file_path), exist_ok=True)
            with open(signal_file_path, 'wb') as f:
                f.write(b'local_rank0_completed_download')
        with dist.local_rank_zero_download_and_wait(signal_file_path):
            dist.barrier()
        if dist.get_local_rank() == 0:
            os.remove(signal_file_path)
        dist.barrier()
        break
    return finetune_dir

def _build_collate_fn(dataloader_cfg: DictConfig, tokenizer: PreTrainedTokenizerBase, device_batch_size: int) -> Tuple[Union[Seq2SeqFinetuningCollator, BinPackCollator], int]:
    dataset_cfg = dataloader_cfg.dataset
    max_seq_len = dataset_cfg.max_seq_len
    collate_fn = Seq2SeqFinetuningCollator(tokenizer=tokenizer, max_seq_len=max_seq_len, decoder_only_format=dataset_cfg.decoder_only_format, target_responses=dataset_cfg.get('target_responses', _DEFAULT_TARGET_RESPONSES), target_prompts=dataset_cfg.get('target_prompts', _DEFAULT_TARGET_PROMPTS), allow_pad_trimming=dataset_cfg.get('allow_pad_trimming', False))
    packing_ratio = dataset_cfg.get('packing_ratio')
    max_leftover_bins_to_keep = dataset_cfg.get('max_leftover_bins_to_keep')
    if packing_ratio is None:
        if max_leftover_bins_to_keep is not None:
            raise ValueError('dataset.max_leftover_bins_to_keep has been defined, ' + 'but dataset.packing_ratio has not been set. Please set ' + 'the latter to turn on packing or remove the former from the config.')
        return (collate_fn, device_batch_size)
    if packing_ratio == 'auto':
        packing_ratio = auto_packing_ratio(dataloader_cfg, tokenizer, device_batch_size)
    if isinstance(packing_ratio, str):
        raise ValueError('dataset.packing_ratio must be a float or "auto", but it was set to ' + f'{packing_ratio}.')
    log.info(f'Using packing ratio {packing_ratio}')
    if packing_ratio == 1.0:
        return (collate_fn, device_batch_size)
    elif packing_ratio < 1.0:
        raise ValueError('packing_ratio must be >= 1, if supplied')
    if not dataset_cfg.decoder_only_format:
        raise NotImplementedError('On-the-fly packing is currently only supported for decoder-only formats.')
    collate_fn = BinPackCollator(collator=collate_fn, target_batch_size=device_batch_size, max_seq_len=max_seq_len, pad_token_id=tokenizer.pad_token_id, padding_side=tokenizer.padding_side, max_leftover_bins_to_keep=max_leftover_bins_to_keep)
    n_examples_to_pack = int(device_batch_size * packing_ratio)
    return (collate_fn, n_examples_to_pack)
if __name__ == '__main__':
    import torch
    from .utils import build_tokenizer
    cfg = om.create({'dataset': {'hf_name': 'tatsu-lab/alpaca', 'preprocessing_fn': 'llmfoundry.data.finetuning.tasks:alpaca_preprocessing_function', 'split': 'train', 'packing_ratio': 18.0, 'max_seq_len': 2048, 'decoder_only_format': True, 'allow_pad_trimming': False, 'num_canonical_nodes': 472, 'shuffle': True, 'target_responses': 'last', 'target_prompts': 'none'}, 'drop_last': False, 'num_workers': 0, 'pin_memory': False, 'prefetch_factor': None, 'persistent_workers': False, 'timeout': 0})
    tokenizer_name = 'EleutherAI/gpt-neox-20b'
    tokenizer_kwargs = {'model_max_length': cfg.dataset.max_seq_len}
    tokenizer = build_tokenizer(tokenizer_name, tokenizer_kwargs)
    device_batch_size = 1
    dataloader = build_finetuning_dataloader(cfg, tokenizer, device_batch_size).dataloader
    packing = cfg.dataset.get('packing_ratio') is not None
    for i, batch in enumerate(dataloader):
        if i >= 5:
            break
        print(f'-----Batch {i}-----')
        for k, v in batch.items():
            if isinstance(v, torch.Tensor):
                print(k, v.shape)
            else:
                print(k, v)
        for j in range(device_batch_size):
            print(f'--- Sample {j} ---')
            if cfg.dataset.decoder_only_format:
                if packing:
                    for subseq in range(int(batch['sequence_id'][j].max()) + 1):
                        is_subseq = batch['sequence_id'][j] == subseq
                        print('\x1b[93m{}\x1b[00m\n'.format('INPUT IDS:'), tokenizer.decode(batch['input_ids'][j, torch.logical_and(is_subseq, batch['attention_mask'][j] == 1)], skip_special_tokens=False, clean_up_tokenization_spaces=True))
                        print('\x1b[91m{}\x1b[00m\n'.format('TARGET:   '), tokenizer.decode(batch['input_ids'][j, torch.logical_and(is_subseq, batch['labels'][j] != _HF_IGNORE_INDEX)], skip_special_tokens=False, clean_up_tokenization_spaces=True))
                else:
                    print('\x1b[93m{}\x1b[00m\n'.format('INPUT IDS:'), tokenizer.decode(batch['input_ids'][j, batch['attention_mask'][j] == 1], skip_special_tokens=False, clean_up_tokenization_spaces=True))
                    print('\x1b[91m{}\x1b[00m\n'.format('TARGET:   '), tokenizer.decode(batch['input_ids'][j, batch['labels'][j] != _HF_IGNORE_INDEX], skip_special_tokens=False, clean_up_tokenization_spaces=True))
            else:
                print('\x1b[92m{}\x1b[00m\n'.format('CONTEXT:  '), tokenizer.decode(batch['input_ids'][j, batch['attention_mask'][j] == 1], skip_special_tokens=False, clean_up_tokenization_spaces=True))
                print('\x1b[91m{}\x1b[00m\n'.format('TARGET:   '), tokenizer.decode(batch['labels'][j, batch['decoder_attention_mask'][j] == 1], skip_special_tokens=False, clean_up_tokenization_spaces=True))
        print('   ')