mpt-30b-instruct / async_eval_callback.py
irenedea's picture
LLM-foundry update March 26, 2024 23:50:31
ef9200f verified
raw
history blame
17.9 kB
"""Run the eval loop asynchronously as part of a MosaicML platform run.
This callback is currently experimental. The API may change in the future.
"""
import logging
import os
import warnings
from collections import Counter
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from .interfaces import CallbackWithConfig
from mcli import Run, RunConfig, create_run, get_run
log = logging.getLogger(__name__)
REQUIRED_PARAMS_FOR_EVAL = {'device_eval_batch_size', 'icl_tasks', 'max_seq_len', 'model', 'tokenizer'}
OPTIONAL_PARAMS_FOR_EVAL = {'dist_timeout', 'eval_gauntlet', 'eval_loader', 'fsdp_config', 'eval_subset_num_batches', 'icl_subset_num_batches', 'loggers', 'precision', 'python_log_level', 'seed'}
RUN_NAME_PREFIX = 'eval'
MAX_RUN_NAME_BASE_LENGTH = 55
def get_run_name(training_run_name: str, current_interval: str) -> str:
"""Get the new eval run name.
Args:
training_run_name: The name of the current training run
current_interval: The current interval string of the training run
Returns:
The new run name
"""
name_without_uuid_suffix = training_run_name.rsplit('-', 1)[0]
max_length = MAX_RUN_NAME_BASE_LENGTH - len(RUN_NAME_PREFIX) - len(current_interval) - 2
if len(name_without_uuid_suffix) > max_length:
new_name = name_without_uuid_suffix[:max_length]
log.warning(f'Training run name {name_without_uuid_suffix} may be too long,' + f' truncating to {new_name}')
name_without_uuid_suffix = new_name
return f'{RUN_NAME_PREFIX}-{current_interval}-{name_without_uuid_suffix}'
def get_eval_parameters(parameters: Dict[str, Any], checkpoint: str, training_run_name: str) -> Dict[str, Any]:
"""Get the parameters needed for the eval run.
Args:
parameters: The parameters from the training run
checkpoint: The path to the latest checkpoint
training_run_name: The name of the training run
Returns:
The parameters needed for the eval run as a dict
"""
looking_for = REQUIRED_PARAMS_FOR_EVAL.copy()
subset_keys = {}
for key in parameters:
if key in OPTIONAL_PARAMS_FOR_EVAL:
subset_keys[key] = parameters[key]
elif key in REQUIRED_PARAMS_FOR_EVAL:
subset_keys[key] = parameters[key]
looking_for.remove(key)
if looking_for:
raise Exception(f'Missing the following required parameters for async eval: {looking_for}')
for logger, config in subset_keys.get('loggers', {}).items():
if logger == 'wandb':
config['group'] = config.pop('name', training_run_name)
model = subset_keys.pop('model')
model_name = model.get('name', None)
if not model_name:
raise Exception(f'Async evaluation requires "name" keys for models')
new_models = {'model_name': model_name, 'model': model, 'load_path': checkpoint}
tokenizer = subset_keys.pop('tokenizer', None)
if tokenizer is not None:
new_models['tokenizer'] = tokenizer
subset_keys['models'] = [new_models]
return subset_keys
def validate_interval(interval: Union[str, int, Time], save_interval: Union[str, int, Time]) -> Time:
new_save_interval = Time.from_input(save_interval, TimeUnit.EPOCH)
async_interval = Time.from_input(interval, TimeUnit.EPOCH)
if new_save_interval.unit != async_interval.unit:
raise ValueError('Save interval and async eval interval must be in the same unit')
if async_interval < new_save_interval:
raise ValueError('Async eval interval must be equal or greater (less frequent) than save interval')
if async_interval.value % new_save_interval.value != 0:
raise ValueError('Async eval interval must be a multiple of save interval')
return async_interval
def validate_eval_run_config(eval_run_config: Optional[Dict[str, Any]]) -> Dict[str, Any]:
if not eval_run_config:
return {}
run_config = eval_run_config.copy()
supported_keys = {'image', 'command', 'compute', 'scheduling'}
found_unsupported = set()
for key in run_config:
if key not in supported_keys:
found_unsupported.add(key)
if found_unsupported:
raise ValueError(f"Unsupported eval run config keys found: {', '.join(found_unsupported)}" + f'. Supported keys: {supported_keys}')
return run_config
CHECKS_PER_INTERVAL = 4
class AsyncEval(CallbackWithConfig):
"""Run the eval loop asynchronously as part of a MosaicML platform run.
This callback is currently experimental. The API may change in the future.
Args:
training_params: Dict[str, Any]: The parameter config from the training run
interval: Union[str, int, Time]: The interval describing how often eval runs should be
launched. If an integer, it will be assumed to be in :attr:`.TimeUnit.EPOCH`.
Otherwise, the unit must be either :attr:`.TimeUnit.EPOCH`, :attr:`.TimeUnit.BATCH`,
:attr:`.TimeUnit.TOKEN`, or :attr:`.TimeUnit.SAMPLE`.
eval_run_config: Optional[Dict[str, Any]]: A subset of mcli run config values to use
for the eval run. If not specified, any fields from run config will be created
dynamically from the training run config and the interval. The following fields
are supported:
- ``image``: Image of the eval run. Default: same as training run
- ``command``: Command to run for the eval run. Default: calls
`composer scripts/eval/eval.py $PARAMETERS`. If custom setup is needed,
the command should include calling the eval script with $PARAMETERS
- ``compute``: Compute to use for the eval run. Default: same cluster as
the training run and a single node (8 GPUs)
- ``scheduling``: Scheduling to use for the eval run. Default: same as training run
All fields are optional, but if specified, must be valid for a mcli run config. We
provide this optional config to give you the most flexibility in customizing the eval
run, but it is recommended to use the default values unless you have a specific use case
"""
def __init__(self, training_params: Dict[str, Any], interval: Union[str, int, Time], eval_run_config: Optional[Dict[str, Any]]=None):
for required in ('save_interval', 'save_folder'):
if required not in training_params:
raise ValueError(f'{required} required for async eval')
if '/' in training_params.get('save_filename', ''):
raise ValueError('AsyncEval not supported for save_filename that includes a path')
self.checkpoint_save_folder = training_params['save_folder']
self.training_params = training_params
self.eval_run_config = validate_eval_run_config(eval_run_config)
self.current_run = self._get_current_run()
get_eval_parameters(parameters=training_params, checkpoint='test', training_run_name=self.current_run.name)
self.interval = validate_interval(interval, self.training_params['save_interval'])
check_interval_value = max(self.interval.value // CHECKS_PER_INTERVAL, 1)
self.check_interval = Time(check_interval_value, self.interval.unit)
self.checkpoints_evaled: Dict[Time, Tuple[str, str]] = {}
self.is_at_check_interval = create_interval_scheduler(self.check_interval, include_end_of_training=False)
log.info('Initialized AsyncEval callback. Will generate runs at ' + f'interval {interval}, checking at {self.check_interval}')
def state_dict(self) -> Dict[str, Any]:
checkpoints_evaled = []
for eval_ts, (checkpoint, run_name) in self.checkpoints_evaled.items():
eval_ts_dict = {'value': eval_ts.value, 'unit': eval_ts.unit.value}
checkpoints_evaled.append((eval_ts_dict, checkpoint, run_name))
return {'checkpoints_evaled': checkpoints_evaled}
def load_state_dict(self, state_dict: Dict[str, Any]):
previous_checkpoints_evaled = state_dict.get('checkpoints_evaled', [])
if previous_checkpoints_evaled:
for eval_ts, checkpoint, run_name in previous_checkpoints_evaled:
eval_ts = Time(eval_ts['value'], TimeUnit(eval_ts['unit']))
self.checkpoints_evaled[eval_ts] = (checkpoint, run_name)
log.info(f'Loaded previous checkpoints evaled: {self.checkpoints_evaled}')
@staticmethod
def _get_ready_sharded_checkpoints(checkpointer_checkpoints: Dict[str, Timestamp], remote_files: List[str]) -> Dict[str, Timestamp]:
"""Identify checkpoints ready to be evaled based on remote files.
This has special logic for sharded checkpoints to consider checkpoints composed
of multiple shards (one per gpu) and metadata
Args:
checkpointer_checkpoints: All checkpoints from the checkpointer state
remote_files: List of remote files in the save folder
Returns:
Dict of checkpoints that are complete and ready to be evaled
"""
remote_file_group_counts = Counter()
for f in remote_files:
checkpoint_ts_path = Path(f).parts[-2]
remote_file_group_counts[checkpoint_ts_path] += 1
checkpoints_to_eval = {}
for checkpoint, checkpoint_ts in checkpointer_checkpoints.items():
checkpoint_ts_path = Path(checkpoint).parts[-2]
expected_shard_count = dist.get_world_size() + 1
if remote_file_group_counts[checkpoint_ts_path] != expected_shard_count:
log.debug(f'Checkpoint {checkpoint} not fully uploaded (missing shards ' + f'{remote_file_group_counts[checkpoint_ts_path]}/{expected_shard_count}), skipping')
continue
checkpoints_to_eval[checkpoint_ts_path] = checkpoint_ts
return checkpoints_to_eval
@staticmethod
def _get_ready_single_checkpoints(checkpointer_checkpoints: Dict[str, Timestamp], remote_checkpoints: List[str]) -> Dict[str, Timestamp]:
"""Identify checkpoints ready to be evaled based on remote checkpoints.
This is much simpler than the sharded case, because there is only one file
Args:
checkpointer_checkpoints: All checkpoints from the checkpointer state
remote_checkpoints: List of remote checkpoints in the save folder
Returns:
Dict of checkpoints that are complete and ready to be evaled
"""
unique_remote_checkpoints = set(remote_checkpoints)
checkpoints_to_eval = {}
for checkpoint, checkpoint_ts in checkpointer_checkpoints.items():
checkpoint_ts_path = Path(checkpoint).parts[-1]
if checkpoint not in unique_remote_checkpoints:
log.debug(f'Checkpoint {checkpoint} not fully uploaded, skipping')
continue
checkpoints_to_eval[checkpoint_ts_path] = checkpoint_ts
return checkpoints_to_eval
def _get_checkpoints_and_launch_runs(self, state: State):
"""Get the latest checkpoint from the training run.
Args:
state: The current state of the training run
Returns:
Returns checkpoints that have not been evaled
"""
checkpointer = None
for callback in state.callbacks:
if isinstance(callback, CheckpointSaver):
if checkpointer is None:
checkpointer = callback
else:
log.warning('Multiple checkpoint savers found. Using the first one')
if not checkpointer:
warnings.warn('No checkpoint saver callback found. Skipping eval')
return
if not checkpointer.all_saved_checkpoints_to_timestamp:
log.debug('No saved checkpoints found on the checkpointer. Skipping eval')
return
log.debug(f'Found {len(checkpointer.all_saved_checkpoints_to_timestamp)} ' + f'checkpoints: {checkpointer.all_saved_checkpoints_to_timestamp}')
remote_checkpoints = list_remote_objects(self.checkpoint_save_folder)
if not remote_checkpoints:
log.debug('No saved checkpoints found yet on remote. Skipping eval')
return
if state.fsdp_sharded_state_dict_enabled:
checkpoints_to_eval = self._get_ready_sharded_checkpoints(checkpointer.all_saved_checkpoints_to_timestamp, remote_checkpoints)
else:
checkpoints_to_eval = self._get_ready_single_checkpoints(checkpointer.all_saved_checkpoints_to_timestamp, remote_checkpoints)
for checkpoint_interval_path, checkpoint_timestamp in checkpoints_to_eval.items():
checkpoint_ts = checkpoint_timestamp.get(self.interval.unit)
if checkpoint_ts.value % self.interval.value != 0:
log.debug(f'Checkpoint {checkpoint_interval_path} ({checkpoint_ts}) is ' + f'not at an eval interval ({self.interval}), skipping')
continue
if checkpoint_ts in self.checkpoints_evaled:
continue
full_checkpoint_path = f'{self.checkpoint_save_folder}/{checkpoint_interval_path}'
eval_run = self.launch_run(full_checkpoint_path, checkpoint_ts)
self.checkpoints_evaled[checkpoint_ts] = (full_checkpoint_path, eval_run.name)
def run_event(self, event: Event, state: State, logger: Logger) -> None:
del logger
should_launch_run = all([state.get_elapsed_duration() is not None, self.is_at_check_interval(state, event), dist.get_global_rank() == 0])
if should_launch_run:
self._get_checkpoints_and_launch_runs(state)
def close(self, state: State, logger: Logger) -> None:
del logger
if dist.get_global_rank() != 0:
return
self._get_checkpoints_and_launch_runs(state)
latest_timestamp = state.timestamp.get(self.interval.unit)
if latest_timestamp not in self.checkpoints_evaled:
save_latest_filename = self.training_params.get('save_latest_filename', None)
if not save_latest_filename:
rank = dist.get_global_rank()
save_latest_filename = f'latest-rank{rank}.pt'
checkpoint = f'{self.checkpoint_save_folder}/{save_latest_filename}'
eval_run = self.launch_run(checkpoint, latest_timestamp)
self.checkpoints_evaled[latest_timestamp] = (checkpoint, eval_run.name)
log.info(f'AsyncEval callback finished. Launched {len(self.checkpoints_evaled)} eval runs:')
for checkpoint_ts, (checkpoint, run_name) in self.checkpoints_evaled.items():
log.info(f' {checkpoint_ts}: {checkpoint}, {run_name}')
def _get_current_run(self) -> Run:
if os.environ.get(MOSAICML_PLATFORM_ENV_VAR, 'false').lower() == 'false':
raise RuntimeError('AsyncEval callback is only supported when running on the MosaicML platform')
run_name = os.environ.get(RUN_NAME_ENV_VAR, None)
if not run_name:
raise RuntimeError('RUN_NAME environment variable must be set to use the AsyncEval callback')
return get_run(run_name, include_details=True)
def launch_run(self, checkpoint: str, current_interval: Time) -> Run:
"""Launch a new eval run.
Args:
checkpoint: The checkpoint to eval
current_interval: The interval of the checkpoint
Returns:
The launched run (mcli.Run type)
"""
log.info(f'Launching eval run for {checkpoint} at {current_interval}')
cfg = self.current_run.submitted_config
default_compute = {'gpus': 8, 'cluster': self.current_run.cluster}
run_name = get_run_name(self.current_run.name, str(current_interval))
params = get_eval_parameters(parameters=self.training_params, checkpoint=checkpoint, training_run_name=self.current_run.name)
params['run_name'] = run_name
integrations = cfg.integrations
found_llm_foundry, installation_path = (False, 'llm-foundry')
for i in integrations:
if i['integration_type'] != 'git_repo':
continue
if not i['git_repo'].endswith('llm-foundry'):
continue
found_llm_foundry = True
if i.get('path'):
installation_path = i['path']
if not found_llm_foundry:
from .llmfoundry import __version__ as latest_foundry_version
version = f'v{latest_foundry_version}'
log.warning('No github integration found for llm-foundry. Adding installation ' + f'to eval run for latest foundry release ({version}). ' + 'To use a fork, custom branch, or custom version, configure ' + 'llm-foundry installation through a github integration')
integrations.append({'integration_type': 'git_repo', 'git_repo': 'mosaicml/llm-foundry', 'git_branch': version, 'pip_install': '-e .[gpu]', 'ssh_clone': False})
metadata = cfg.metadata
metadata['eval_timestamp'] = current_interval.value
metadata['eval_timestamp_unit'] = current_interval.unit.value
default_command = f'cd {installation_path}/scripts \n composer eval/eval.py $PARAMETERS'
run_config = RunConfig(name=run_name, image=self.eval_run_config.get('image', self.current_run.image), command=self.eval_run_config.get('command', default_command), compute=self.eval_run_config.get('compute', default_compute), scheduling=self.eval_run_config.get('scheduling', self.current_run.submitted_config.scheduling), integrations=integrations, env_variables=cfg.env_variables, metadata=cfg.metadata, parameters=params)
log.info(f'Creating new run with config: \n{run_config}')
new_run = create_run(run_config)
log.info(f'Launched new run {new_run.name} inside eval loop')
return new_run