File size: 3,998 Bytes
0d87f19
c019b24
0d87f19
 
 
c019b24
0d87f19
e12c4b6
 
 
ce13d72
 
0d87f19
 
 
e12c4b6
c019b24
e12c4b6
c019b24
 
0d87f19
 
 
c019b24
0d87f19
ce13d72
 
0d87f19
c019b24
 
 
 
 
0d87f19
 
e12c4b6
0d87f19
e12c4b6
0d87f19
ce13d72
0d87f19
c019b24
 
 
ce13d72
e12c4b6
 
 
ce13d72
0d87f19
e12c4b6
 
 
0d87f19
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""GPT Blocks used for the GPT Model."""
from typing import Any, Dict, Optional, Tuple
import torch
import torch.nn as nn
from .attention import ATTN_CLASS_REGISTRY
from .ffn import FFN_CLASS_REGISTRY, build_ffn
from .norm import NORM_CLASS_REGISTRY
try:
    from flash_attn.bert_padding import unpad_input, pad_input
except:
    unpad_input, pad_input = (None, None)
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'flash', 'qk_ln': False, 'qk_gn': False, 'clip_qkv': None, 'softmax_scale': None, 'attn_uses_sequence_id': False, 'sliding_window_size': -1, 'alibi': False, 'alibi_bias_max': 8, 'rope': False, 'rope_theta': 10000, 'rope_impl': 'dail', 'rope_dail_config': {'type': 'original', 'pos_idx_in_fp32': True, 'xpos_scale_base': 512}, 'rope_hf_config': {'type': 'no_scaling', 'factor': 1.0}}

class MPTBlock(nn.Module):

    def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
        if attn_config is None:
            attn_config = attn_config_defaults
        if ffn_config is None:
            ffn_config = {'ffn_type': 'mptmlp'}
        del kwargs
        super().__init__()
        norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
        assert isinstance(attn_config['attn_type'], str)
        attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
        args_to_exclude_in_attn_class = {'attn_type', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max', 'rope', 'rope_theta', 'rope_impl', 'rope_dail_config', 'rope_hf_config'}
        attn_config_subset_for_attn_class = {k: v for k, v in attn_config.items() if k not in args_to_exclude_in_attn_class}
        self.norm_1 = norm_class(d_model, device=device)
        self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
        self.norm_2 = None
        if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', False):
            self.norm_2 = norm_class(d_model, device=device)
        self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
        self.resid_attn_dropout = nn.Dropout(resid_pdrop)
        self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
        self.use_pad_tok_in_ffn = use_pad_tok_in_ffn

    def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[Dict]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
        a = self.norm_1(x)
        b, attn_weights, past_key_value = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions, alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
        x = x + self.resid_attn_dropout(b)
        m = x
        if self.norm_2 is not None:
            m = self.norm_2(x)
        batch_size, seq_len = m.size()[:2]
        indices = None
        if not self.use_pad_tok_in_ffn:
            assert unpad_input is not None
            m, indices, _, _ = unpad_input(m, attention_mask)
        n = self.ffn(m)
        if not self.use_pad_tok_in_ffn:
            assert pad_input is not None
            n = pad_input(n, indices, batch_size, seq_len)
        x = x + self.resid_ffn_dropout(n)
        return (x, attn_weights, past_key_value)