File size: 17,859 Bytes
fdb2891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
"""Run the eval loop asynchronously as part of a MosaicML platform run.

This callback is currently experimental. The API may change in the future.
"""
import logging
import os
import warnings
from collections import Counter
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from .interfaces import CallbackWithConfig
from mcli import Run, RunConfig, create_run, get_run
log = logging.getLogger(__name__)
REQUIRED_PARAMS_FOR_EVAL = {'device_eval_batch_size', 'icl_tasks', 'max_seq_len', 'model', 'tokenizer'}
OPTIONAL_PARAMS_FOR_EVAL = {'dist_timeout', 'eval_gauntlet', 'eval_loader', 'fsdp_config', 'eval_subset_num_batches', 'icl_subset_num_batches', 'loggers', 'precision', 'python_log_level', 'seed'}
RUN_NAME_PREFIX = 'eval'
MAX_RUN_NAME_BASE_LENGTH = 55

def get_run_name(training_run_name: str, current_interval: str) -> str:
    """Get the new eval run name.

    Args:
        training_run_name: The name of the current training run
        current_interval: The current interval string of the training run

    Returns:
        The new run name
    """
    name_without_uuid_suffix = training_run_name.rsplit('-', 1)[0]
    max_length = MAX_RUN_NAME_BASE_LENGTH - len(RUN_NAME_PREFIX) - len(current_interval) - 2
    if len(name_without_uuid_suffix) > max_length:
        new_name = name_without_uuid_suffix[:max_length]
        log.warning(f'Training run name {name_without_uuid_suffix} may be too long,' + f' truncating to {new_name}')
        name_without_uuid_suffix = new_name
    return f'{RUN_NAME_PREFIX}-{current_interval}-{name_without_uuid_suffix}'

def get_eval_parameters(parameters: Dict[str, Any], checkpoint: str, training_run_name: str) -> Dict[str, Any]:
    """Get the parameters needed for the eval run.

    Args:
        parameters: The parameters from the training run
        checkpoint: The path to the latest checkpoint
        training_run_name: The name of the training run

    Returns:
        The parameters needed for the eval run as a dict
    """
    looking_for = REQUIRED_PARAMS_FOR_EVAL.copy()
    subset_keys = {}
    for key in parameters:
        if key in OPTIONAL_PARAMS_FOR_EVAL:
            subset_keys[key] = parameters[key]
        elif key in REQUIRED_PARAMS_FOR_EVAL:
            subset_keys[key] = parameters[key]
            looking_for.remove(key)
    if looking_for:
        raise Exception(f'Missing the following required parameters for async eval: {looking_for}')
    for logger, config in subset_keys.get('loggers', {}).items():
        if logger == 'wandb':
            config['group'] = config.pop('name', training_run_name)
    model = subset_keys.pop('model')
    model_name = model.get('name', None)
    if not model_name:
        raise Exception(f'Async evaluation requires "name" keys for models')
    new_models = {'model_name': model_name, 'model': model, 'load_path': checkpoint}
    tokenizer = subset_keys.pop('tokenizer', None)
    if tokenizer is not None:
        new_models['tokenizer'] = tokenizer
    subset_keys['models'] = [new_models]
    return subset_keys

def validate_interval(interval: Union[str, int, Time], save_interval: Union[str, int, Time]) -> Time:
    new_save_interval = Time.from_input(save_interval, TimeUnit.EPOCH)
    async_interval = Time.from_input(interval, TimeUnit.EPOCH)
    if new_save_interval.unit != async_interval.unit:
        raise ValueError('Save interval and async eval interval must be in the same unit')
    if async_interval < new_save_interval:
        raise ValueError('Async eval interval must be equal or greater (less frequent) than save interval')
    if async_interval.value % new_save_interval.value != 0:
        raise ValueError('Async eval interval must be a multiple of save interval')
    return async_interval

def validate_eval_run_config(eval_run_config: Optional[Dict[str, Any]]) -> Dict[str, Any]:
    if not eval_run_config:
        return {}
    run_config = eval_run_config.copy()
    supported_keys = {'image', 'command', 'compute', 'scheduling'}
    found_unsupported = set()
    for key in run_config:
        if key not in supported_keys:
            found_unsupported.add(key)
    if found_unsupported:
        raise ValueError(f"Unsupported eval run config keys found: {', '.join(found_unsupported)}" + f'. Supported keys: {supported_keys}')
    return run_config
CHECKS_PER_INTERVAL = 4

class AsyncEval(CallbackWithConfig):
    """Run the eval loop asynchronously as part of a MosaicML platform run.

    This callback is currently experimental. The API may change in the future.

    Args:
        training_params: Dict[str, Any]: The parameter config from the training run
        interval: Union[str, int, Time]: The interval describing how often eval runs should be
            launched. If an integer, it will be assumed to be in :attr:`.TimeUnit.EPOCH`.
            Otherwise, the unit must be either :attr:`.TimeUnit.EPOCH`, :attr:`.TimeUnit.BATCH`,
            :attr:`.TimeUnit.TOKEN`, or :attr:`.TimeUnit.SAMPLE`.
        eval_run_config: Optional[Dict[str, Any]]: A subset of mcli run config values to use
            for the eval run. If not specified, any fields from run config will be created
            dynamically from the training run config and the interval. The following fields
            are supported:
            - ``image``: Image of the eval run. Default: same as training run
            - ``command``: Command to run for the eval run. Default: calls
                `composer scripts/eval/eval.py $PARAMETERS`. If custom setup is needed,
                the command should include calling the eval script with $PARAMETERS
            - ``compute``: Compute to use for the eval run. Default: same cluster as
                the training run and a single node (8 GPUs)
            - ``scheduling``: Scheduling to use for the eval run. Default: same as training run

            All fields are optional, but if specified, must be valid for a mcli run config. We
            provide this optional config to give you the most flexibility in customizing the eval
            run, but it is recommended to use the default values unless you have a specific use case
    """

    def __init__(self, training_params: Dict[str, Any], interval: Union[str, int, Time], eval_run_config: Optional[Dict[str, Any]]=None):
        for required in ('save_interval', 'save_folder'):
            if required not in training_params:
                raise ValueError(f'{required} required for async eval')
        if '/' in training_params.get('save_filename', ''):
            raise ValueError('AsyncEval not supported for save_filename that includes a path')
        self.checkpoint_save_folder = training_params['save_folder']
        self.training_params = training_params
        self.eval_run_config = validate_eval_run_config(eval_run_config)
        self.current_run = self._get_current_run()
        get_eval_parameters(parameters=training_params, checkpoint='test', training_run_name=self.current_run.name)
        self.interval = validate_interval(interval, self.training_params['save_interval'])
        check_interval_value = max(self.interval.value // CHECKS_PER_INTERVAL, 1)
        self.check_interval = Time(check_interval_value, self.interval.unit)
        self.checkpoints_evaled: Dict[Time, Tuple[str, str]] = {}
        self.is_at_check_interval = create_interval_scheduler(self.check_interval, include_end_of_training=False)
        log.info('Initialized AsyncEval callback. Will generate runs at ' + f'interval {interval}, checking at {self.check_interval}')

    def state_dict(self) -> Dict[str, Any]:
        checkpoints_evaled = []
        for eval_ts, (checkpoint, run_name) in self.checkpoints_evaled.items():
            eval_ts_dict = {'value': eval_ts.value, 'unit': eval_ts.unit.value}
            checkpoints_evaled.append((eval_ts_dict, checkpoint, run_name))
        return {'checkpoints_evaled': checkpoints_evaled}

    def load_state_dict(self, state_dict: Dict[str, Any]):
        previous_checkpoints_evaled = state_dict.get('checkpoints_evaled', [])
        if previous_checkpoints_evaled:
            for eval_ts, checkpoint, run_name in previous_checkpoints_evaled:
                eval_ts = Time(eval_ts['value'], TimeUnit(eval_ts['unit']))
                self.checkpoints_evaled[eval_ts] = (checkpoint, run_name)
            log.info(f'Loaded previous checkpoints evaled: {self.checkpoints_evaled}')

    @staticmethod
    def _get_ready_sharded_checkpoints(checkpointer_checkpoints: Dict[str, Timestamp], remote_files: List[str]) -> Dict[str, Timestamp]:
        """Identify checkpoints ready to be evaled based on remote files.

        This has special logic for sharded checkpoints to consider checkpoints composed
        of multiple shards (one per gpu) and metadata

        Args:
            checkpointer_checkpoints: All checkpoints from the checkpointer state
            remote_files: List of remote files in the save folder

        Returns:
            Dict of checkpoints that are complete and ready to be evaled
        """
        remote_file_group_counts = Counter()
        for f in remote_files:
            checkpoint_ts_path = Path(f).parts[-2]
            remote_file_group_counts[checkpoint_ts_path] += 1
        checkpoints_to_eval = {}
        for checkpoint, checkpoint_ts in checkpointer_checkpoints.items():
            checkpoint_ts_path = Path(checkpoint).parts[-2]
            expected_shard_count = dist.get_world_size() + 1
            if remote_file_group_counts[checkpoint_ts_path] != expected_shard_count:
                log.debug(f'Checkpoint {checkpoint} not fully uploaded (missing shards ' + f'{remote_file_group_counts[checkpoint_ts_path]}/{expected_shard_count}), skipping')
                continue
            checkpoints_to_eval[checkpoint_ts_path] = checkpoint_ts
        return checkpoints_to_eval

    @staticmethod
    def _get_ready_single_checkpoints(checkpointer_checkpoints: Dict[str, Timestamp], remote_checkpoints: List[str]) -> Dict[str, Timestamp]:
        """Identify checkpoints ready to be evaled based on remote checkpoints.

        This is much simpler than the sharded case, because there is only one file

        Args:
            checkpointer_checkpoints: All checkpoints from the checkpointer state
            remote_checkpoints: List of remote checkpoints in the save folder

        Returns:
            Dict of checkpoints that are complete and ready to be evaled
        """
        unique_remote_checkpoints = set(remote_checkpoints)
        checkpoints_to_eval = {}
        for checkpoint, checkpoint_ts in checkpointer_checkpoints.items():
            checkpoint_ts_path = Path(checkpoint).parts[-1]
            if checkpoint not in unique_remote_checkpoints:
                log.debug(f'Checkpoint {checkpoint} not fully uploaded, skipping')
                continue
            checkpoints_to_eval[checkpoint_ts_path] = checkpoint_ts
        return checkpoints_to_eval

    def _get_checkpoints_and_launch_runs(self, state: State):
        """Get the latest checkpoint from the training run.

        Args:
            state: The current state of the training run

        Returns:
            Returns checkpoints that have not been evaled
        """
        checkpointer = None
        for callback in state.callbacks:
            if isinstance(callback, CheckpointSaver):
                if checkpointer is None:
                    checkpointer = callback
                else:
                    log.warning('Multiple checkpoint savers found. Using the first one')
        if not checkpointer:
            warnings.warn('No checkpoint saver callback found. Skipping eval')
            return
        if not checkpointer.all_saved_checkpoints_to_timestamp:
            log.debug('No saved checkpoints found on the checkpointer. Skipping eval')
            return
        log.debug(f'Found {len(checkpointer.all_saved_checkpoints_to_timestamp)} ' + f'checkpoints: {checkpointer.all_saved_checkpoints_to_timestamp}')
        remote_checkpoints = list_remote_objects(self.checkpoint_save_folder)
        if not remote_checkpoints:
            log.debug('No saved checkpoints found yet on remote. Skipping eval')
            return
        if state.fsdp_sharded_state_dict_enabled:
            checkpoints_to_eval = self._get_ready_sharded_checkpoints(checkpointer.all_saved_checkpoints_to_timestamp, remote_checkpoints)
        else:
            checkpoints_to_eval = self._get_ready_single_checkpoints(checkpointer.all_saved_checkpoints_to_timestamp, remote_checkpoints)
        for checkpoint_interval_path, checkpoint_timestamp in checkpoints_to_eval.items():
            checkpoint_ts = checkpoint_timestamp.get(self.interval.unit)
            if checkpoint_ts.value % self.interval.value != 0:
                log.debug(f'Checkpoint {checkpoint_interval_path} ({checkpoint_ts}) is ' + f'not at an eval interval ({self.interval}), skipping')
                continue
            if checkpoint_ts in self.checkpoints_evaled:
                continue
            full_checkpoint_path = f'{self.checkpoint_save_folder}/{checkpoint_interval_path}'
            eval_run = self.launch_run(full_checkpoint_path, checkpoint_ts)
            self.checkpoints_evaled[checkpoint_ts] = (full_checkpoint_path, eval_run.name)

    def run_event(self, event: Event, state: State, logger: Logger) -> None:
        del logger
        should_launch_run = all([state.get_elapsed_duration() is not None, self.is_at_check_interval(state, event), dist.get_global_rank() == 0])
        if should_launch_run:
            self._get_checkpoints_and_launch_runs(state)

    def close(self, state: State, logger: Logger) -> None:
        del logger
        if dist.get_global_rank() != 0:
            return
        self._get_checkpoints_and_launch_runs(state)
        latest_timestamp = state.timestamp.get(self.interval.unit)
        if latest_timestamp not in self.checkpoints_evaled:
            save_latest_filename = self.training_params.get('save_latest_filename', None)
            if not save_latest_filename:
                rank = dist.get_global_rank()
                save_latest_filename = f'latest-rank{rank}.pt'
            checkpoint = f'{self.checkpoint_save_folder}/{save_latest_filename}'
            eval_run = self.launch_run(checkpoint, latest_timestamp)
            self.checkpoints_evaled[latest_timestamp] = (checkpoint, eval_run.name)
        log.info(f'AsyncEval callback finished. Launched {len(self.checkpoints_evaled)} eval runs:')
        for checkpoint_ts, (checkpoint, run_name) in self.checkpoints_evaled.items():
            log.info(f'  {checkpoint_ts}: {checkpoint}, {run_name}')

    def _get_current_run(self) -> Run:
        if os.environ.get(MOSAICML_PLATFORM_ENV_VAR, 'false').lower() == 'false':
            raise RuntimeError('AsyncEval callback is only supported when running on the MosaicML platform')
        run_name = os.environ.get(RUN_NAME_ENV_VAR, None)
        if not run_name:
            raise RuntimeError('RUN_NAME environment variable must be set to use the AsyncEval callback')
        return get_run(run_name, include_details=True)

    def launch_run(self, checkpoint: str, current_interval: Time) -> Run:
        """Launch a new eval run.

        Args:
            checkpoint: The checkpoint to eval
            current_interval: The interval of the checkpoint

        Returns:
            The launched run (mcli.Run type)
        """
        log.info(f'Launching eval run for {checkpoint} at {current_interval}')
        cfg = self.current_run.submitted_config
        default_compute = {'gpus': 8, 'cluster': self.current_run.cluster}
        run_name = get_run_name(self.current_run.name, str(current_interval))
        params = get_eval_parameters(parameters=self.training_params, checkpoint=checkpoint, training_run_name=self.current_run.name)
        params['run_name'] = run_name
        integrations = cfg.integrations
        found_llm_foundry, installation_path = (False, 'llm-foundry')
        for i in integrations:
            if i['integration_type'] != 'git_repo':
                continue
            if not i['git_repo'].endswith('llm-foundry'):
                continue
            found_llm_foundry = True
            if i.get('path'):
                installation_path = i['path']
        if not found_llm_foundry:
            from .llmfoundry import __version__ as latest_foundry_version
            version = f'v{latest_foundry_version}'
            log.warning('No github integration found for llm-foundry. Adding installation ' + f'to eval run for latest foundry release ({version}). ' + 'To use a fork, custom branch, or custom version, configure ' + 'llm-foundry installation through a github integration')
            integrations.append({'integration_type': 'git_repo', 'git_repo': 'mosaicml/llm-foundry', 'git_branch': version, 'pip_install': '-e .[gpu]', 'ssh_clone': False})
        metadata = cfg.metadata
        metadata['eval_timestamp'] = current_interval.value
        metadata['eval_timestamp_unit'] = current_interval.unit.value
        default_command = f'cd {installation_path}/scripts \n composer eval/eval.py $PARAMETERS'
        run_config = RunConfig(name=run_name, image=self.eval_run_config.get('image', self.current_run.image), command=self.eval_run_config.get('command', default_command), compute=self.eval_run_config.get('compute', default_compute), scheduling=self.eval_run_config.get('scheduling', self.current_run.submitted_config.scheduling), integrations=integrations, env_variables=cfg.env_variables, metadata=cfg.metadata, parameters=params)
        log.info(f'Creating new run with config: \n{run_config}')
        new_run = create_run(run_config)
        log.info(f'Launched new run {new_run.name} inside eval loop')
        return new_run