--- license: other base_model: nvidia/segformer-b1-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision model-index: - name: segformer_b1_finetuned_segment_pv_p100_16batch results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/segformer-pv-4batches/runs/jxdpvkao) # segformer_b1_finetuned_segment_pv_p100_16batch This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0062 - Mean Iou: 0.8656 - Precision: 0.9155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00016 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:| | 0.59 | 1.0 | 230 | 0.2289 | 0.5149 | 0.5478 | | 0.111 | 2.0 | 460 | 0.0320 | 0.7322 | 0.8038 | | 0.0254 | 3.0 | 690 | 0.0133 | 0.7865 | 0.8738 | | 0.0115 | 4.0 | 920 | 0.0079 | 0.8335 | 0.8829 | | 0.0078 | 5.0 | 1150 | 0.0076 | 0.8156 | 0.8598 | | 0.0061 | 6.0 | 1380 | 0.0061 | 0.8436 | 0.8926 | | 0.0051 | 7.0 | 1610 | 0.0056 | 0.8478 | 0.9170 | | 0.0042 | 8.0 | 1840 | 0.0059 | 0.8497 | 0.8975 | | 0.0038 | 9.0 | 2070 | 0.0062 | 0.8431 | 0.9186 | | 0.0037 | 10.0 | 2300 | 0.0055 | 0.8529 | 0.9142 | | 0.0036 | 11.0 | 2530 | 0.0061 | 0.8397 | 0.8834 | | 0.0035 | 12.0 | 2760 | 0.0055 | 0.8497 | 0.8981 | | 0.0032 | 13.0 | 2990 | 0.0055 | 0.8485 | 0.9015 | | 0.0028 | 14.0 | 3220 | 0.0056 | 0.8549 | 0.8979 | | 0.0028 | 15.0 | 3450 | 0.0059 | 0.8523 | 0.8975 | | 0.0026 | 16.0 | 3680 | 0.0055 | 0.8579 | 0.9120 | | 0.0026 | 17.0 | 3910 | 0.0056 | 0.8587 | 0.9110 | | 0.0024 | 18.0 | 4140 | 0.0074 | 0.8295 | 0.9233 | | 0.0029 | 19.0 | 4370 | 0.0058 | 0.8548 | 0.9092 | | 0.0025 | 20.0 | 4600 | 0.0055 | 0.8556 | 0.8914 | | 0.0025 | 21.0 | 4830 | 0.0054 | 0.8569 | 0.9017 | | 0.0028 | 22.0 | 5060 | 0.0055 | 0.8622 | 0.9166 | | 0.0024 | 23.0 | 5290 | 0.0057 | 0.8633 | 0.9216 | | 0.0022 | 24.0 | 5520 | 0.0059 | 0.8623 | 0.9155 | | 0.002 | 25.0 | 5750 | 0.0060 | 0.8614 | 0.9046 | | 0.002 | 26.0 | 5980 | 0.0062 | 0.8563 | 0.9092 | | 0.0019 | 27.0 | 6210 | 0.0059 | 0.8642 | 0.9125 | | 0.0018 | 28.0 | 6440 | 0.0060 | 0.8656 | 0.9097 | | 0.0018 | 29.0 | 6670 | 0.0060 | 0.8632 | 0.9174 | | 0.0018 | 30.0 | 6900 | 0.0061 | 0.8647 | 0.9172 | | 0.0018 | 31.0 | 7130 | 0.0062 | 0.8657 | 0.9155 | | 0.0017 | 32.0 | 7360 | 0.0061 | 0.8650 | 0.9129 | | 0.0017 | 33.0 | 7590 | 0.0062 | 0.8656 | 0.9138 | | 0.0017 | 34.0 | 7820 | 0.0064 | 0.8657 | 0.9127 | | 0.0016 | 35.0 | 8050 | 0.0065 | 0.8665 | 0.9156 | | 0.0016 | 36.0 | 8280 | 0.0067 | 0.8624 | 0.9051 | | 0.0015 | 37.0 | 8510 | 0.0065 | 0.8658 | 0.9116 | | 0.0016 | 38.0 | 8740 | 0.0061 | 0.8660 | 0.9149 | | 0.0015 | 39.0 | 8970 | 0.0063 | 0.8662 | 0.9155 | | 0.0015 | 40.0 | 9200 | 0.0062 | 0.8656 | 0.9155 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1