--- library_name: transformers base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/cord-sroie metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-base-cord-sroie results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord-sroie type: mp-02/cord-sroie metrics: - name: Precision type: precision value: 0.9105022831050228 - name: Recall type: recall value: 0.9447998104714522 - name: F1 type: f1 value: 0.9273340309266364 - name: Accuracy type: accuracy value: 0.9738126147097005 --- # layoutlmv3-base-cord-sroie This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord-sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.0936 - Precision: 0.9105 - Recall: 0.9448 - F1: 0.9273 - Accuracy: 0.9738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.7937 | 100 | 0.4396 | 0.6271 | 0.6015 | 0.6140 | 0.9064 | | No log | 1.5873 | 200 | 0.2500 | 0.8669 | 0.8394 | 0.8529 | 0.9508 | | No log | 2.3810 | 300 | 0.1517 | 0.8682 | 0.9050 | 0.8862 | 0.9634 | | No log | 3.1746 | 400 | 0.1346 | 0.8694 | 0.9339 | 0.9005 | 0.9645 | | 0.6691 | 3.9683 | 500 | 0.0943 | 0.9369 | 0.9325 | 0.9347 | 0.9778 | | 0.6691 | 4.7619 | 600 | 0.0922 | 0.9049 | 0.9491 | 0.9265 | 0.9742 | | 0.6691 | 5.5556 | 700 | 0.1106 | 0.8913 | 0.9540 | 0.9216 | 0.9717 | | 0.6691 | 6.3492 | 800 | 0.0875 | 0.9091 | 0.9552 | 0.9316 | 0.9755 | | 0.6691 | 7.1429 | 900 | 0.0958 | 0.8977 | 0.9623 | 0.9289 | 0.9743 | | 0.1055 | 7.9365 | 1000 | 0.0936 | 0.9105 | 0.9448 | 0.9273 | 0.9738 | | 0.1055 | 8.7302 | 1100 | 0.1035 | 0.9289 | 0.9415 | 0.9352 | 0.9766 | | 0.1055 | 9.5238 | 1200 | 0.1115 | 0.9081 | 0.9507 | 0.9289 | 0.9739 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3