mp-02 commited on
Commit
007f133
·
verified ·
1 Parent(s): 7bee760

End of training

Browse files
Files changed (1) hide show
  1. README.md +18 -20
README.md CHANGED
@@ -21,16 +21,16 @@ model-index:
21
  metrics:
22
  - name: Precision
23
  type: precision
24
- value: 0.9474485910129474
25
  - name: Recall
26
  type: recall
27
- value: 0.9658385093167702
28
  - name: F1
29
  type: f1
30
- value: 0.9565551710880431
31
  - name: Accuracy
32
  type: accuracy
33
- value: 0.9613752122241087
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
40
 
41
  This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
42
  It achieves the following results on the evaluation set:
43
- - Loss: 0.2047
44
- - Precision: 0.9474
45
- - Recall: 0.9658
46
- - F1: 0.9566
47
- - Accuracy: 0.9614
48
 
49
  ## Model description
50
 
@@ -64,23 +64,21 @@ More information needed
64
 
65
  The following hyperparameters were used during training:
66
  - learning_rate: 1e-05
67
- - train_batch_size: 10
68
- - eval_batch_size: 10
69
  - seed: 42
70
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
  - lr_scheduler_type: linear
72
- - training_steps: 1500
73
 
74
  ### Training results
75
 
76
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
- |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
- | No log | 3.125 | 250 | 0.7037 | 0.8188 | 0.8665 | 0.8419 | 0.8587 |
79
- | 1.0839 | 6.25 | 500 | 0.3828 | 0.8926 | 0.9293 | 0.9106 | 0.9223 |
80
- | 1.0839 | 9.375 | 750 | 0.2811 | 0.9371 | 0.9596 | 0.9482 | 0.9469 |
81
- | 0.2469 | 12.5 | 1000 | 0.2295 | 0.9401 | 0.9620 | 0.9509 | 0.9529 |
82
- | 0.2469 | 15.625 | 1250 | 0.2106 | 0.9460 | 0.9658 | 0.9558 | 0.9601 |
83
- | 0.1263 | 18.75 | 1500 | 0.2047 | 0.9474 | 0.9658 | 0.9566 | 0.9614 |
84
 
85
 
86
  ### Framework versions
 
21
  metrics:
22
  - name: Precision
23
  type: precision
24
+ value: 0.9220389805097451
25
  - name: Recall
26
  type: recall
27
+ value: 0.9549689440993789
28
  - name: F1
29
  type: f1
30
+ value: 0.9382151029748284
31
  - name: Accuracy
32
  type: accuracy
33
+ value: 0.934634974533107
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
40
 
41
  This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
42
  It achieves the following results on the evaluation set:
43
+ - Loss: 0.3103
44
+ - Precision: 0.9220
45
+ - Recall: 0.9550
46
+ - F1: 0.9382
47
+ - Accuracy: 0.9346
48
 
49
  ## Model description
50
 
 
64
 
65
  The following hyperparameters were used during training:
66
  - learning_rate: 1e-05
67
+ - train_batch_size: 12
68
+ - eval_batch_size: 12
69
  - seed: 42
70
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
  - lr_scheduler_type: linear
72
+ - training_steps: 1000
73
 
74
  ### Training results
75
 
76
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
+ |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | No log | 3.7313 | 250 | 0.7079 | 0.8180 | 0.8657 | 0.8412 | 0.8476 |
79
+ | 1.064 | 7.4627 | 500 | 0.4029 | 0.8791 | 0.9255 | 0.9017 | 0.9138 |
80
+ | 1.064 | 11.1940 | 750 | 0.3349 | 0.9132 | 0.9480 | 0.9303 | 0.9308 |
81
+ | 0.294 | 14.9254 | 1000 | 0.3103 | 0.9220 | 0.9550 | 0.9382 | 0.9346 |
 
 
82
 
83
 
84
  ### Framework versions