End of training
Browse files
README.md
CHANGED
@@ -21,16 +21,16 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
-
value: 0.
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
-
value: 0.
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
-
value: 0.
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 0.
|
44 |
-
- Precision: 0.
|
45 |
-
- Recall: 0.
|
46 |
-
- F1: 0.
|
47 |
-
- Accuracy: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -64,23 +64,21 @@ More information needed
|
|
64 |
|
65 |
The following hyperparameters were used during training:
|
66 |
- learning_rate: 1e-05
|
67 |
-
- train_batch_size:
|
68 |
-
- eval_batch_size:
|
69 |
- seed: 42
|
70 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
- lr_scheduler_type: linear
|
72 |
-
- training_steps:
|
73 |
|
74 |
### Training results
|
75 |
|
76 |
-
| Training Loss | Epoch
|
77 |
-
|
78 |
-
| No log | 3.
|
79 |
-
| 1.
|
80 |
-
| 1.
|
81 |
-
| 0.
|
82 |
-
| 0.2469 | 15.625 | 1250 | 0.2106 | 0.9460 | 0.9658 | 0.9558 | 0.9601 |
|
83 |
-
| 0.1263 | 18.75 | 1500 | 0.2047 | 0.9474 | 0.9658 | 0.9566 | 0.9614 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
+
value: 0.9220389805097451
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
+
value: 0.9549689440993789
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
+
value: 0.9382151029748284
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
+
value: 0.934634974533107
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.3103
|
44 |
+
- Precision: 0.9220
|
45 |
+
- Recall: 0.9550
|
46 |
+
- F1: 0.9382
|
47 |
+
- Accuracy: 0.9346
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
64 |
|
65 |
The following hyperparameters were used during training:
|
66 |
- learning_rate: 1e-05
|
67 |
+
- train_batch_size: 12
|
68 |
+
- eval_batch_size: 12
|
69 |
- seed: 42
|
70 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
- lr_scheduler_type: linear
|
72 |
+
- training_steps: 1000
|
73 |
|
74 |
### Training results
|
75 |
|
76 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
+
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| No log | 3.7313 | 250 | 0.7079 | 0.8180 | 0.8657 | 0.8412 | 0.8476 |
|
79 |
+
| 1.064 | 7.4627 | 500 | 0.4029 | 0.8791 | 0.9255 | 0.9017 | 0.9138 |
|
80 |
+
| 1.064 | 11.1940 | 750 | 0.3349 | 0.9132 | 0.9480 | 0.9303 | 0.9308 |
|
81 |
+
| 0.294 | 14.9254 | 1000 | 0.3103 | 0.9220 | 0.9550 | 0.9382 | 0.9346 |
|
|
|
|
|
82 |
|
83 |
|
84 |
### Framework versions
|