mp-02 commited on
Commit
4583c57
·
verified ·
1 Parent(s): 011eefa

End of training

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -21,16 +21,16 @@ model-index:
21
  metrics:
22
  - name: Precision
23
  type: precision
24
- value: 0.9640397857689365
25
  - name: Recall
26
  type: recall
27
- value: 0.9782608695652174
28
  - name: F1
29
  type: f1
30
- value: 0.9710982658959537
31
  - name: Accuracy
32
  type: accuracy
33
- value: 0.9741086587436333
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
40
 
41
  This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
42
  It achieves the following results on the evaluation set:
43
- - Loss: 0.1874
44
- - Precision: 0.9640
45
- - Recall: 0.9783
46
- - F1: 0.9711
47
- - Accuracy: 0.9741
48
 
49
  ## Model description
50
 
@@ -63,7 +63,7 @@ More information needed
63
  ### Training hyperparameters
64
 
65
  The following hyperparameters were used during training:
66
- - learning_rate: 5e-05
67
  - train_batch_size: 10
68
  - eval_batch_size: 10
69
  - seed: 42
@@ -75,11 +75,11 @@ The following hyperparameters were used during training:
75
 
76
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
- | 0.4341 | 6.25 | 500 | 0.1703 | 0.9601 | 0.9720 | 0.9660 | 0.9656 |
79
- | 0.0487 | 12.5 | 1000 | 0.1762 | 0.9662 | 0.9759 | 0.9710 | 0.9703 |
80
- | 0.0185 | 18.75 | 1500 | 0.1913 | 0.9609 | 0.9720 | 0.9664 | 0.9682 |
81
- | 0.0091 | 25.0 | 2000 | 0.1846 | 0.9693 | 0.9821 | 0.9757 | 0.9758 |
82
- | 0.0038 | 31.25 | 2500 | 0.1874 | 0.9640 | 0.9783 | 0.9711 | 0.9741 |
83
 
84
 
85
  ### Framework versions
 
21
  metrics:
22
  - name: Precision
23
  type: precision
24
+ value: 0.7572254335260116
25
  - name: Recall
26
  type: recall
27
+ value: 0.8136645962732919
28
  - name: F1
29
  type: f1
30
+ value: 0.784431137724551
31
  - name: Accuracy
32
  type: accuracy
33
+ value: 0.7975382003395586
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
40
 
41
  This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
42
  It achieves the following results on the evaluation set:
43
+ - Loss: 1.0695
44
+ - Precision: 0.7572
45
+ - Recall: 0.8137
46
+ - F1: 0.7844
47
+ - Accuracy: 0.7975
48
 
49
  ## Model description
50
 
 
63
  ### Training hyperparameters
64
 
65
  The following hyperparameters were used during training:
66
+ - learning_rate: 1e-06
67
  - train_batch_size: 10
68
  - eval_batch_size: 10
69
  - seed: 42
 
75
 
76
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | 2.7217 | 6.25 | 500 | 1.8788 | 0.5168 | 0.6095 | 0.5593 | 0.5883 |
79
+ | 1.7562 | 12.5 | 1000 | 1.4443 | 0.5337 | 0.6576 | 0.5892 | 0.6795 |
80
+ | 1.4387 | 18.75 | 1500 | 1.2162 | 0.6981 | 0.7811 | 0.7373 | 0.7746 |
81
+ | 1.2728 | 25.0 | 2000 | 1.1030 | 0.7473 | 0.8106 | 0.7777 | 0.7941 |
82
+ | 1.1902 | 31.25 | 2500 | 1.0695 | 0.7572 | 0.8137 | 0.7844 | 0.7975 |
83
 
84
 
85
  ### Framework versions