End of training
Browse files
README.md
CHANGED
@@ -21,16 +21,16 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
-
value: 0.
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
-
value: 0.
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
-
value: 0.
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss:
|
44 |
-
- Precision: 0.
|
45 |
-
- Recall: 0.
|
46 |
-
- F1: 0.
|
47 |
-
- Accuracy: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -63,7 +63,7 @@ More information needed
|
|
63 |
### Training hyperparameters
|
64 |
|
65 |
The following hyperparameters were used during training:
|
66 |
-
- learning_rate:
|
67 |
- train_batch_size: 10
|
68 |
- eval_batch_size: 10
|
69 |
- seed: 42
|
@@ -75,11 +75,11 @@ The following hyperparameters were used during training:
|
|
75 |
|
76 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
|
84 |
|
85 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
+
value: 0.7572254335260116
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
+
value: 0.8136645962732919
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
+
value: 0.784431137724551
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
+
value: 0.7975382003395586
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 1.0695
|
44 |
+
- Precision: 0.7572
|
45 |
+
- Recall: 0.8137
|
46 |
+
- F1: 0.7844
|
47 |
+
- Accuracy: 0.7975
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
63 |
### Training hyperparameters
|
64 |
|
65 |
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 1e-06
|
67 |
- train_batch_size: 10
|
68 |
- eval_batch_size: 10
|
69 |
- seed: 42
|
|
|
75 |
|
76 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| 2.7217 | 6.25 | 500 | 1.8788 | 0.5168 | 0.6095 | 0.5593 | 0.5883 |
|
79 |
+
| 1.7562 | 12.5 | 1000 | 1.4443 | 0.5337 | 0.6576 | 0.5892 | 0.6795 |
|
80 |
+
| 1.4387 | 18.75 | 1500 | 1.2162 | 0.6981 | 0.7811 | 0.7373 | 0.7746 |
|
81 |
+
| 1.2728 | 25.0 | 2000 | 1.1030 | 0.7473 | 0.8106 | 0.7777 | 0.7941 |
|
82 |
+
| 1.1902 | 31.25 | 2500 | 1.0695 | 0.7572 | 0.8137 | 0.7844 | 0.7975 |
|
83 |
|
84 |
|
85 |
### Framework versions
|