mp-02 commited on
Commit
5e50d7b
·
verified ·
1 Parent(s): fddd702

End of training

Browse files
Files changed (1) hide show
  1. README.md +25 -24
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  base_model: layoutlmv3
3
  tags:
4
  - generated_from_trainer
@@ -21,16 +22,16 @@ model-index:
21
  metrics:
22
  - name: Precision
23
  type: precision
24
- value: 0.9511823035850496
25
  - name: Recall
26
  type: recall
27
- value: 0.968167701863354
28
  - name: F1
29
  type: f1
30
- value: 0.9595998460946518
31
  - name: Accuracy
32
  type: accuracy
33
- value: 0.9596774193548387
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -40,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
40
 
41
  This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
42
  It achieves the following results on the evaluation set:
43
- - Loss: 0.2305
44
- - Precision: 0.9512
45
- - Recall: 0.9682
46
- - F1: 0.9596
47
- - Accuracy: 0.9597
48
 
49
  ## Model description
50
 
@@ -64,8 +65,8 @@ More information needed
64
 
65
  The following hyperparameters were used during training:
66
  - learning_rate: 1e-05
67
- - train_batch_size: 10
68
- - eval_batch_size: 10
69
  - seed: 42
70
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
  - lr_scheduler_type: linear
@@ -73,23 +74,23 @@ The following hyperparameters were used during training:
73
 
74
  ### Training results
75
 
76
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
- |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
- | No log | 3.125 | 250 | 0.6703 | 0.8163 | 0.8626 | 0.8388 | 0.8502 |
79
- | 1.0387 | 6.25 | 500 | 0.3617 | 0.8935 | 0.9317 | 0.9122 | 0.9253 |
80
- | 1.0387 | 9.375 | 750 | 0.2860 | 0.9320 | 0.9581 | 0.9449 | 0.9423 |
81
- | 0.2107 | 12.5 | 1000 | 0.2416 | 0.9429 | 0.9620 | 0.9523 | 0.9525 |
82
- | 0.2107 | 15.625 | 1250 | 0.2120 | 0.9550 | 0.9713 | 0.9630 | 0.9631 |
83
- | 0.0887 | 18.75 | 1500 | 0.2211 | 0.9474 | 0.9658 | 0.9566 | 0.9588 |
84
- | 0.0887 | 21.875 | 1750 | 0.2304 | 0.9474 | 0.9658 | 0.9566 | 0.9576 |
85
- | 0.0515 | 25.0 | 2000 | 0.2344 | 0.9526 | 0.9682 | 0.9603 | 0.9584 |
86
- | 0.0515 | 28.125 | 2250 | 0.2300 | 0.9490 | 0.9674 | 0.9581 | 0.9601 |
87
- | 0.0366 | 31.25 | 2500 | 0.2305 | 0.9512 | 0.9682 | 0.9596 | 0.9597 |
88
 
89
 
90
  ### Framework versions
91
 
92
- - Transformers 4.42.4
93
  - Pytorch 2.4.0+cu118
94
  - Datasets 2.21.0
95
  - Tokenizers 0.19.1
 
1
  ---
2
+ library_name: transformers
3
  base_model: layoutlmv3
4
  tags:
5
  - generated_from_trainer
 
22
  metrics:
23
  - name: Precision
24
  type: precision
25
+ value: 0.9587155963302753
26
  - name: Recall
27
  type: recall
28
+ value: 0.9736024844720497
29
  - name: F1
30
  type: f1
31
+ value: 0.9661016949152543
32
  - name: Accuracy
33
  type: accuracy
34
+ value: 0.9656196943972836
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.2067
45
+ - Precision: 0.9587
46
+ - Recall: 0.9736
47
+ - F1: 0.9661
48
+ - Accuracy: 0.9656
49
 
50
  ## Model description
51
 
 
65
 
66
  The following hyperparameters were used during training:
67
  - learning_rate: 1e-05
68
+ - train_batch_size: 12
69
+ - eval_batch_size: 12
70
  - seed: 42
71
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
  - lr_scheduler_type: linear
 
74
 
75
  ### Training results
76
 
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | No log | 3.7313 | 250 | 0.6302 | 0.8384 | 0.8742 | 0.8559 | 0.8633 |
80
+ | 1.0061 | 7.4627 | 500 | 0.3168 | 0.9144 | 0.9457 | 0.9298 | 0.9372 |
81
+ | 1.0061 | 11.1940 | 750 | 0.2460 | 0.9444 | 0.9620 | 0.9531 | 0.9533 |
82
+ | 0.1885 | 14.9254 | 1000 | 0.2109 | 0.9534 | 0.9689 | 0.9611 | 0.9622 |
83
+ | 0.1885 | 18.6567 | 1250 | 0.2030 | 0.9571 | 0.9705 | 0.9638 | 0.9618 |
84
+ | 0.0721 | 22.3881 | 1500 | 0.1985 | 0.9562 | 0.9666 | 0.9614 | 0.9626 |
85
+ | 0.0721 | 26.1194 | 1750 | 0.2002 | 0.9557 | 0.9705 | 0.9630 | 0.9656 |
86
+ | 0.04 | 29.8507 | 2000 | 0.2086 | 0.9579 | 0.9720 | 0.9649 | 0.9643 |
87
+ | 0.04 | 33.5821 | 2250 | 0.2032 | 0.9587 | 0.9736 | 0.9661 | 0.9660 |
88
+ | 0.0313 | 37.3134 | 2500 | 0.2067 | 0.9587 | 0.9736 | 0.9661 | 0.9656 |
89
 
90
 
91
  ### Framework versions
92
 
93
+ - Transformers 4.44.2
94
  - Pytorch 2.4.0+cu118
95
  - Datasets 2.21.0
96
  - Tokenizers 0.19.1