mp-02 commited on
Commit
8bc0b13
·
verified ·
1 Parent(s): 6ecaf9d

End of training

Browse files
Files changed (1) hide show
  1. README.md +18 -22
README.md CHANGED
@@ -21,16 +21,16 @@ model-index:
21
  metrics:
22
  - name: Precision
23
  type: precision
24
- value: 0.8267254038179148
25
  - name: Recall
26
  type: recall
27
- value: 0.8742236024844721
28
  - name: F1
29
  type: f1
30
- value: 0.849811320754717
31
  - name: Accuracy
32
  type: accuracy
33
- value: 0.8629032258064516
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
40
 
41
  This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
42
  It achieves the following results on the evaluation set:
43
- - Loss: 0.6607
44
- - Precision: 0.8267
45
- - Recall: 0.8742
46
- - F1: 0.8498
47
- - Accuracy: 0.8629
48
 
49
  ## Model description
50
 
@@ -69,22 +69,18 @@ The following hyperparameters were used during training:
69
  - seed: 42
70
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
  - lr_scheduler_type: linear
72
- - training_steps: 500
73
 
74
  ### Training results
75
 
76
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
- | No log | 0.625 | 50 | 2.1674 | 0.4806 | 0.5947 | 0.5316 | 0.5221 |
79
- | 2.5708 | 1.25 | 100 | 1.5070 | 0.5181 | 0.6328 | 0.5697 | 0.6541 |
80
- | 2.5708 | 1.875 | 150 | 1.2109 | 0.6437 | 0.7461 | 0.6911 | 0.7432 |
81
- | 1.4992 | 2.5 | 200 | 1.0374 | 0.7118 | 0.7919 | 0.7497 | 0.7861 |
82
- | 1.1332 | 3.125 | 250 | 0.9108 | 0.7656 | 0.8292 | 0.7961 | 0.8226 |
83
- | 1.1332 | 3.75 | 300 | 0.7992 | 0.7847 | 0.8463 | 0.8143 | 0.8374 |
84
- | 0.9023 | 4.375 | 350 | 0.7404 | 0.8124 | 0.8641 | 0.8375 | 0.8519 |
85
- | 0.9023 | 5.0 | 400 | 0.6935 | 0.8210 | 0.8727 | 0.8461 | 0.8612 |
86
- | 0.7884 | 5.625 | 450 | 0.6681 | 0.8254 | 0.8734 | 0.8487 | 0.8625 |
87
- | 0.7236 | 6.25 | 500 | 0.6607 | 0.8267 | 0.8742 | 0.8498 | 0.8629 |
88
 
89
 
90
  ### Framework versions
 
21
  metrics:
22
  - name: Precision
23
  type: precision
24
+ value: 0.9474485910129474
25
  - name: Recall
26
  type: recall
27
+ value: 0.9658385093167702
28
  - name: F1
29
  type: f1
30
+ value: 0.9565551710880431
31
  - name: Accuracy
32
  type: accuracy
33
+ value: 0.9613752122241087
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
40
 
41
  This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
42
  It achieves the following results on the evaluation set:
43
+ - Loss: 0.2047
44
+ - Precision: 0.9474
45
+ - Recall: 0.9658
46
+ - F1: 0.9566
47
+ - Accuracy: 0.9614
48
 
49
  ## Model description
50
 
 
69
  - seed: 42
70
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
  - lr_scheduler_type: linear
72
+ - training_steps: 1500
73
 
74
  ### Training results
75
 
76
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | No log | 3.125 | 250 | 0.7037 | 0.8188 | 0.8665 | 0.8419 | 0.8587 |
79
+ | 1.0839 | 6.25 | 500 | 0.3828 | 0.8926 | 0.9293 | 0.9106 | 0.9223 |
80
+ | 1.0839 | 9.375 | 750 | 0.2811 | 0.9371 | 0.9596 | 0.9482 | 0.9469 |
81
+ | 0.2469 | 12.5 | 1000 | 0.2295 | 0.9401 | 0.9620 | 0.9509 | 0.9529 |
82
+ | 0.2469 | 15.625 | 1250 | 0.2106 | 0.9460 | 0.9658 | 0.9558 | 0.9601 |
83
+ | 0.1263 | 18.75 | 1500 | 0.2047 | 0.9474 | 0.9658 | 0.9566 | 0.9614 |
 
 
 
 
84
 
85
 
86
  ### Framework versions