End of training
Browse files
README.md
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
license: cc-by-nc-sa-4.0
|
4 |
-
base_model: microsoft/layoutlmv3-base
|
5 |
tags:
|
6 |
- generated_from_trainer
|
|
|
|
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
@@ -11,7 +11,26 @@ metrics:
|
|
11 |
- accuracy
|
12 |
model-index:
|
13 |
- name: layoutlmv3-finetuned-cord
|
14 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -19,13 +38,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
# layoutlmv3-finetuned-cord
|
21 |
|
22 |
-
This model is a fine-tuned version of [
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
-
- Accuracy: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -44,42 +63,31 @@ More information needed
|
|
44 |
### Training hyperparameters
|
45 |
|
46 |
The following hyperparameters were used during training:
|
47 |
-
- learning_rate:
|
48 |
- train_batch_size: 10
|
49 |
- eval_batch_size: 10
|
50 |
- seed: 42
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
-
- training_steps:
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch
|
58 |
-
|
59 |
-
| No log |
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.5639 | 9.0 | 720 | 0.2286 | 0.9451 | 0.9627 | 0.9538 | 0.9563 |
|
68 |
-
| 0.5639 | 10.0 | 800 | 0.1797 | 0.9587 | 0.9736 | 0.9661 | 0.9665 |
|
69 |
-
| 0.5639 | 11.0 | 880 | 0.1962 | 0.9580 | 0.9736 | 0.9657 | 0.9665 |
|
70 |
-
| 0.5639 | 12.0 | 960 | 0.2051 | 0.9579 | 0.9720 | 0.9649 | 0.9652 |
|
71 |
-
| 0.0563 | 13.0 | 1040 | 0.1768 | 0.9633 | 0.9775 | 0.9703 | 0.9694 |
|
72 |
-
| 0.0563 | 14.0 | 1120 | 0.1745 | 0.9617 | 0.9759 | 0.9688 | 0.9699 |
|
73 |
-
| 0.0563 | 15.0 | 1200 | 0.1795 | 0.9632 | 0.9752 | 0.9691 | 0.9682 |
|
74 |
-
| 0.0563 | 16.0 | 1280 | 0.1805 | 0.9640 | 0.9767 | 0.9703 | 0.9690 |
|
75 |
-
| 0.0563 | 17.0 | 1360 | 0.1819 | 0.9610 | 0.9759 | 0.9684 | 0.9690 |
|
76 |
-
| 0.0563 | 18.0 | 1440 | 0.1802 | 0.9617 | 0.9759 | 0.9688 | 0.9686 |
|
77 |
-
| 0.0184 | 18.75 | 1500 | 0.1814 | 0.9647 | 0.9767 | 0.9707 | 0.9690 |
|
78 |
|
79 |
|
80 |
### Framework versions
|
81 |
|
82 |
-
- Transformers 4.
|
83 |
- Pytorch 2.4.0+cu118
|
84 |
- Datasets 2.21.0
|
85 |
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
+
base_model: layoutlmv3
|
|
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- mp-02/cord
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
|
|
11 |
- accuracy
|
12 |
model-index:
|
13 |
- name: layoutlmv3-finetuned-cord
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: mp-02/cord
|
20 |
+
type: mp-02/cord
|
21 |
+
metrics:
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.9572519083969465
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.9736024844720497
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.9653579676674365
|
31 |
+
- name: Accuracy
|
32 |
+
type: accuracy
|
33 |
+
value: 0.9673174872665535
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
38 |
|
39 |
# layoutlmv3-finetuned-cord
|
40 |
|
41 |
+
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.1831
|
44 |
+
- Precision: 0.9573
|
45 |
+
- Recall: 0.9736
|
46 |
+
- F1: 0.9654
|
47 |
+
- Accuracy: 0.9673
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
63 |
### Training hyperparameters
|
64 |
|
65 |
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 1e-05
|
67 |
- train_batch_size: 10
|
68 |
- eval_batch_size: 10
|
69 |
- seed: 42
|
70 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
- lr_scheduler_type: linear
|
72 |
+
- training_steps: 2000
|
73 |
|
74 |
### Training results
|
75 |
|
76 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| No log | 3.125 | 250 | 0.7551 | 0.7974 | 0.8587 | 0.8269 | 0.8544 |
|
79 |
+
| 1.1001 | 6.25 | 500 | 0.3822 | 0.8846 | 0.9286 | 0.9061 | 0.9215 |
|
80 |
+
| 1.1001 | 9.375 | 750 | 0.2750 | 0.9334 | 0.9581 | 0.9456 | 0.9444 |
|
81 |
+
| 0.2309 | 12.5 | 1000 | 0.2072 | 0.9439 | 0.9674 | 0.9555 | 0.9605 |
|
82 |
+
| 0.2309 | 15.625 | 1250 | 0.1934 | 0.9500 | 0.9728 | 0.9613 | 0.9652 |
|
83 |
+
| 0.1003 | 18.75 | 1500 | 0.1898 | 0.9602 | 0.9736 | 0.9668 | 0.9665 |
|
84 |
+
| 0.1003 | 21.875 | 1750 | 0.2032 | 0.9542 | 0.9705 | 0.9623 | 0.9631 |
|
85 |
+
| 0.0637 | 25.0 | 2000 | 0.1831 | 0.9573 | 0.9736 | 0.9654 | 0.9673 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
89 |
|
90 |
+
- Transformers 4.42.4
|
91 |
- Pytorch 2.4.0+cu118
|
92 |
- Datasets 2.21.0
|
93 |
- Tokenizers 0.19.1
|