--- base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord type: mp-02/cord metrics: - name: Precision type: precision value: 0.7572254335260116 - name: Recall type: recall value: 0.8136645962732919 - name: F1 type: f1 value: 0.784431137724551 - name: Accuracy type: accuracy value: 0.7975382003395586 --- # layoutlmv3-finetuned-cord This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. It achieves the following results on the evaluation set: - Loss: 1.0695 - Precision: 0.7572 - Recall: 0.8137 - F1: 0.7844 - Accuracy: 0.7975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.7217 | 6.25 | 500 | 1.8788 | 0.5168 | 0.6095 | 0.5593 | 0.5883 | | 1.7562 | 12.5 | 1000 | 1.4443 | 0.5337 | 0.6576 | 0.5892 | 0.6795 | | 1.4387 | 18.75 | 1500 | 1.2162 | 0.6981 | 0.7811 | 0.7373 | 0.7746 | | 1.2728 | 25.0 | 2000 | 1.1030 | 0.7473 | 0.8106 | 0.7777 | 0.7941 | | 1.1902 | 31.25 | 2500 | 1.0695 | 0.7572 | 0.8137 | 0.7844 | 0.7975 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1