--- base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord type: mp-02/cord metrics: - name: Precision type: precision value: 0.963984674329502 - name: Recall type: recall value: 0.9767080745341615 - name: F1 type: f1 value: 0.9703046664095644 - name: Accuracy type: accuracy value: 0.9690152801358234 --- # layoutlmv3-finetuned-cord This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. It achieves the following results on the evaluation set: - Loss: 0.2087 - Precision: 0.9640 - Recall: 0.9767 - F1: 0.9703 - Accuracy: 0.9690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.5625 | 250 | 0.2302 | 0.9594 | 0.9720 | 0.9657 | 0.9656 | | 0.041 | 3.125 | 500 | 0.2176 | 0.9542 | 0.9705 | 0.9623 | 0.9618 | | 0.041 | 4.6875 | 750 | 0.1903 | 0.9573 | 0.9736 | 0.9654 | 0.9682 | | 0.0302 | 6.25 | 1000 | 0.2027 | 0.9602 | 0.9744 | 0.9672 | 0.9660 | | 0.0302 | 7.8125 | 1250 | 0.2174 | 0.9670 | 0.9775 | 0.9722 | 0.9703 | | 0.019 | 9.375 | 1500 | 0.2018 | 0.9640 | 0.9775 | 0.9707 | 0.9711 | | 0.019 | 10.9375 | 1750 | 0.2084 | 0.9677 | 0.9783 | 0.9730 | 0.9694 | | 0.0115 | 12.5 | 2000 | 0.2087 | 0.9640 | 0.9767 | 0.9703 | 0.9690 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1