--- base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord type: mp-02/cord metrics: - name: Precision type: precision value: 0.9640397857689365 - name: Recall type: recall value: 0.9782608695652174 - name: F1 type: f1 value: 0.9710982658959537 - name: Accuracy type: accuracy value: 0.9741086587436333 --- # layoutlmv3-finetuned-cord This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. It achieves the following results on the evaluation set: - Loss: 0.1874 - Precision: 0.9640 - Recall: 0.9783 - F1: 0.9711 - Accuracy: 0.9741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4341 | 6.25 | 500 | 0.1703 | 0.9601 | 0.9720 | 0.9660 | 0.9656 | | 0.0487 | 12.5 | 1000 | 0.1762 | 0.9662 | 0.9759 | 0.9710 | 0.9703 | | 0.0185 | 18.75 | 1500 | 0.1913 | 0.9609 | 0.9720 | 0.9664 | 0.9682 | | 0.0091 | 25.0 | 2000 | 0.1846 | 0.9693 | 0.9821 | 0.9757 | 0.9758 | | 0.0038 | 31.25 | 2500 | 0.1874 | 0.9640 | 0.9783 | 0.9711 | 0.9741 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1