--- base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord type: mp-02/cord metrics: - name: Precision type: precision value: 0.9474485910129474 - name: Recall type: recall value: 0.9658385093167702 - name: F1 type: f1 value: 0.9565551710880431 - name: Accuracy type: accuracy value: 0.9613752122241087 --- # layoutlmv3-finetuned-cord This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. It achieves the following results on the evaluation set: - Loss: 0.2047 - Precision: 0.9474 - Recall: 0.9658 - F1: 0.9566 - Accuracy: 0.9614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 3.125 | 250 | 0.7037 | 0.8188 | 0.8665 | 0.8419 | 0.8587 | | 1.0839 | 6.25 | 500 | 0.3828 | 0.8926 | 0.9293 | 0.9106 | 0.9223 | | 1.0839 | 9.375 | 750 | 0.2811 | 0.9371 | 0.9596 | 0.9482 | 0.9469 | | 0.2469 | 12.5 | 1000 | 0.2295 | 0.9401 | 0.9620 | 0.9509 | 0.9529 | | 0.2469 | 15.625 | 1250 | 0.2106 | 0.9460 | 0.9658 | 0.9558 | 0.9601 | | 0.1263 | 18.75 | 1500 | 0.2047 | 0.9474 | 0.9658 | 0.9566 | 0.9614 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1